分析 (1)由平行四邊形的判定定理容易得出結(jié)果;
(2)連接AC,由SSS證明△ABC≌CDA,得出對應(yīng)角相等∠BAC=∠DCA,∠BCA=∠DAC,證出AB∥DC,BC∥AD,即可得出結(jié)論.
解答 解:(1)補(bǔ)全已知和求證:
已知:在四邊形ABCD中,BC=AD,AB=CD.
求證:四邊形ABCD是平行四邊形.
故答案為:CD;平行;
(2)證明:如圖,連結(jié)AC,
在△ABC和△CDA中,
$\left\{\begin{array}{l}{AB=CD}\\{CB=DA}\\{AC=CA}\end{array}\right.$,
∴△ABC≌CDA(SSS),
∴∠BAC=∠DCA,∠BCA=∠DAC,
∴AB∥DC,BC∥AD,
∴四邊形ABCD是平行四邊形.
點(diǎn)評 本題考查了平行四邊形的判定定理、全等三角形的判定方法、平行線的判定;熟練掌握平行四邊形的判定,證明三角形全等是解決問題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a3(-a2)=-2a5 | B. | (a-b)2=a2-b2 | C. | (-a)5÷(-a)2=a3 | D. | (-3)-1=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a•a2=a2 | B. | (a2)3=a5 | C. | 3a2•5a3=15a6 | D. | a5÷a2=a3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com