推理填空:
完成下列證明:如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.
求證: DG∥BA.
證明:∵AD⊥BC,EF⊥BC ( 已知 )
∴∠EFB=90°,∠ADB="90°(_______________________" )
∴∠EFB=∠ADB ( 等量代換 )
∴EF∥AD ( _________________________________ )
∴∠1=∠BAD (________________________________________)
又∵∠1=∠2 ( 已知)
∴ (等量代換)
∴DG∥BA. (__________________________________)
垂直定義;同位角相等,兩直線平行;兩直線平行,同位角相等;∠2=∠BAD;內(nèi)錯(cuò)角相等,兩直線平行
解析試題分析:先根據(jù)垂直的定義證得∠EFB=90°,∠ADB=90°,再根據(jù)平行線的判定和性質(zhì)依次分析即可.
∵AD⊥BC,EF⊥BC ( 已知 )
∴∠EFB=90°,∠ADB=90°(__垂直定義___ )
∴∠EFB=∠ADB ( 等量代換 )
∴EF∥AD ( 同位角相等,兩直線平行 )
∴∠1=∠BAD (兩直線平行,同位角相等)
又∵∠1=∠2 ( 已知)
∴∠2=∠BAD(等量代換)
∴DG∥BA (內(nèi)錯(cuò)角相等,兩直線平行) .
考點(diǎn):垂直的定義,平行線的判定和性質(zhì)
點(diǎn)評(píng):平行線的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:雙色筆記九年級(jí)數(shù)學(xué)(上) 題型:044
閱讀與思考:
(1)下面是課本中對(duì)平行四邊形判定定理4(一組對(duì)邊平行且相等的四邊形是平行四邊形)的證明,請(qǐng)邊閱讀,邊進(jìn)行推理填空,然后思考后面的問題.
已知:如圖在四邊形ABCD中,AB∥CD,且AB=CD.
求證:四邊形ABCD是平行四邊形.
證明:連結(jié)AC.
∵AB∥CD( ),
∴∠1=∠2( ),
又∵AB=CD( ),AC=AC( ),
∴△ABC≌△CDA( ),
∴BC=AD,∴四邊形ABCD是平行四邊形( )上面的證明是利用平行四邊形判定定理________完成的.在證明過程中,證明了△ABC≌△CDA,由此還可以推出∠B=________,同理可證∠A=________,可見,平行四邊形判定定理4也可以利用平行四邊形判定定理________來證明.在圖中再連結(jié)BD,設(shè)AC與BD相交于點(diǎn)O,則可以利用判定三角形全等的________公理證明△AOB≌△________,進(jìn)而推出AO=________,BO=________,這說明平行四邊形判定定理4也可以利用平行四邊形判定定理________來證明.
(2)如果要畫平行四邊形ABCD,使∠B=,AB=2cm,BC=3cm,請(qǐng)回答下列問題:
①利用平行四邊形判定定理2畫所求的平行四邊形ABCD,在畫出AB、BC后,怎樣確定點(diǎn)D的位置?
②利用平行四邊形判定定理3畫所求的平行四邊形ABCD,應(yīng)按怎樣的步驟進(jìn)行?請(qǐng)寫出畫法.
③利用平行四邊形判定定理4畫所求的平行四邊形ABCD,在畫出AB、BC后,怎樣確定點(diǎn)D的位置?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com