若拋物線的兩交點關(guān)于原點對稱,則分別為       .

,3

解析考點:二次函數(shù)圖象與幾何變換;關(guān)于原點對稱的點的坐標(biāo).
分析:有交點,可讓兩個拋物線組成方程組.
解:由題意可得,兩個函數(shù)有交點,則y相等,
則有ax2+bx+3=-x2+3x+2,得:(a+1)x2+(b-3)x+1=0.
∵兩交點關(guān)于原點對稱,那么兩個橫坐標(biāo)的值互為相反數(shù);兩個縱坐標(biāo)的值也互為相反數(shù).
則兩根之和為:-=0,兩根之積為<0,
解得b=3,a<-1.
設(shè)兩個交點坐標(biāo)為(x1,y1),(x2,y2).
這兩個根都適合第二個函數(shù)解析式,那么y1+y2=-(x12+x22)+3 (x1+x2)+4=0,
∵x1+x2=0,
∴y1+y2=-(x1+x22+2x1x2+4=0,
解得x1x2=-2,
代入兩根之積得=-2,
解得a=-,
故a=-,b=3.
另法:(若交點關(guān)于原點對稱,那么在y=-x2+3x+2中,必定自身存在關(guān)于原點對稱的兩個點,設(shè)這兩個點橫坐標(biāo)分別為k和-k,直接在y=-x2+3x+2代入k,然后相加兩個式子-k2+3k+2=0與-k2-3k+2=0,可得出k為±,從而直接得到兩個點,再待定系數(shù)法,將兩點代入y=ax2+bx+3,直接可以得出a,b的值.
點評:本題用到的知識點為:兩個函數(shù)有交點,那么應(yīng)讓這兩個函數(shù)圖象組成方程組,而后根據(jù)根與系數(shù)的關(guān)系求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012年人教版初中數(shù)學(xué)九年級下26.1二次函數(shù)及其圖像練習(xí)卷(解析版) 題型:填空題

若拋物線的兩交點關(guān)于原點對稱,則分別為       

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教新課標(biāo)版中考綜合模擬數(shù)學(xué)卷(4) 題型:填空題

若拋物線的兩交點關(guān)于原點對稱,則=       

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市海淀區(qū)初三一模數(shù)學(xué)試題 題型:填空題

若拋物線的兩交點關(guān)于原點對稱,則分別為        .

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若拋物線的兩交點關(guān)于原點對稱,則分別為       .

 

查看答案和解析>>

同步練習(xí)冊答案