【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)y 進(jìn)行了探究,下面是他的探究過程:

1)已知x-3時(shí) 0;x1 時(shí) 0,化簡(jiǎn):

①當(dāng)x-3時(shí),y

②當(dāng)-3≤x≤1時(shí),y

③當(dāng)x1時(shí),y

2)在平面直角坐標(biāo)系中畫出y|x1|+|x+3|的圖象,根據(jù)圖象,寫出該函數(shù)的一條性質(zhì):  ;

【答案】122x;4;2x+2;(2)畫出圖象見解析;函數(shù)圖象不過原點(diǎn).

【解析】

1)根據(jù)已知條件及絕對(duì)值的化簡(jiǎn)法則計(jì)算即可;
2)畫出函數(shù)圖象,則易得一條函數(shù)性質(zhì);

解:(1)∵x=﹣3時(shí)|x+3|0;x1時(shí)|x1|0

∴當(dāng)x<﹣3時(shí),y1xx3=﹣22x;

當(dāng)﹣3x1時(shí),y1x+x+34;

當(dāng)x1時(shí),yx1+x+32x+2

故答案為:﹣22x;42x+2

2)在平面直角坐標(biāo)系中畫出y|x1|+|x+3|的圖象,如圖所示:

根據(jù)圖象,該函數(shù)圖象不過原點(diǎn).

故答案為:函數(shù)圖象不過原點(diǎn);

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)任意三個(gè)連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差是4的倍數(shù);

驗(yàn)證:(1 的結(jié)果是4的幾倍?

2)設(shè)三個(gè)連續(xù)的整數(shù)中間的一個(gè)為n,計(jì)算最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差,并說明它是4的倍數(shù);

延伸:說明任意三個(gè)連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個(gè)數(shù)的平方差是8的倍數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD、AE分別是∠BAC與∠BAC的外角的平分線,BEAE.求證:AB=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解放中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂四類電視節(jié)目的喜愛程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問題.

(1)喜愛動(dòng)畫的學(xué)生人數(shù)和所占比例分別是多少?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列方程的特征及其解的特點(diǎn).

x=-3的解為x1=-1,x2=-2;

x=-5的解為x1=-2,x2=-3;

x=-7的解為x1=-3,x2=-4.

解答下列問題:

(1)請(qǐng)你寫出一個(gè)符合上述特征的方程為________,其解為________

(2)根據(jù)這類方程的特征,寫出第n個(gè)方程為________,其解為________;

(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程x=-2(n+2)(其中n為正整數(shù))的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1 ,高為DE,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中AC、E在同一直線上.

1)求斜坡CD的高度DE;

2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)OAB的中點(diǎn),且OC=OD

1)求證:平行四邊形ABCD是矩形;

2)若AD=3,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平行四邊形ABCD和平行四邊形CDEF有公共邊CD,邊ABEF在同一條直線上,ACCDAC=AF,過點(diǎn)AAHBCCF于點(diǎn)G,交BC于點(diǎn)H,連接EG

1)若AE=2,CD=5,則BCF的面積為 BCF的周長為 ;

2)求證:BC=AG+EG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,DE∥AB,DF∥AC.

(1)求證:∠A=∠EDF.

(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.

①若點(diǎn)G是線段AE的中點(diǎn),請(qǐng)你在圖2中補(bǔ)全圖形,判斷∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系,并證明.

②若點(diǎn)G是線段EC上的一點(diǎn),請(qǐng)你直接寫出∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案