【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)由在ABCD中,E是BC的中點,利用ASA,即可判定△ABE≌△FCE,繼而證得結論;
(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三線合一,證得結論.
試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB∥DF,∴∠ABE=∠FCE,∵E為BC中點,∴BE=CE,在△ABE與△FCE中,∵∠ABE=∠FCE,BE=CE,∠AEB=∠CEF,∴△ABE≌△FCE(ASA),∴AB=FC;
(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別延長ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結CG,AH.
求證:CG∥AH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中xOy中,已知點A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),m>0,1<a<3,點P(n﹣m,n)是四邊形ABCD內的一點,且△PAD與△PBC的面積相等,求n﹣m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別是AB,CD的中點,G,H分別是AF,CE的中點,連結EG,F(xiàn)H.
(1)四邊形EHFG是不是平行四邊形?如果是,請給出證明;如果不是,請說明理由;
(2)求四邊形EHFG的面積與平行四邊形ABCD的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2015次運動后,動點P的坐標是( )
A.(2015,0)
B.(2015,1)
C.(2015,2)
D.(2016,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點D、E、F分別是等邊△ABC的三條邊AB、BC、CA上的點.
(1)如圖(1),若ED⊥AB,DF⊥AC,F(xiàn)E⊥BC,求證:△DEF是等邊三角形;
(2)如圖(2),若AD=BE=CF,求證:△DEF是等邊三角形;
(3)如圖(3),若△DEF是等邊三角形,求證:AD=BE=CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com