如圖,以Rt△ABC的三邊為直角邊分別向外作等腰直角三角形.若AB=5,則圖中陰影部分的面積為( 。
分析:先用直角三角形的邊長表示出陰影部分的面積,再根據(jù)勾股定理可得:AB2=AC2+BC2,進而可將陰影部分的面積求出.
解答:解:S陰影=
1
2
AC2+
1
2
BC2+
1
2
AB2=
1
2
(AB2+AC2+BC2),
∵AB2=AC2+BC2=25,
∴AB2+AC2+BC2=50,
∴S陰影=
1
2
×50=25.
故選D.
點評:本題考查了勾股定理的知識,要求能夠運用勾股定理證明三個等腰直角三角形的面積之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點,連接ED、BD.
(1)求證:△ABC∽△BCD
(2)DE與半圓O相切嗎?若相切,請給出證明;若不相切,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以Rt△ABC各邊為直徑的三個半圓圍成兩個新月形(陰影部分),已知AC=3cm,BC=4cm.則新月形(陰影部分)的面積和是
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,以Rt△ABC的斜邊AB為直徑作⊙0,D是BC上的點,且有弧AC=弧CD,連CD、BD,在BD延長線上取一點E,使∠DCE=∠CBD.
(1)求證:CE是⊙0的切線;
(2)若CD=2
5
,DE和CE的長度的比為
1
2
,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以Rt△ABC的直角邊AC為直徑作圓O交斜邊AB于點D,若劣弧CD=120°,則
BDAD
=
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•黔南州)如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點,連接DE.
(1)DE與半圓0是否相切?若相切,請給出證明;若不相切,請說明理由;
(2)若AD、AB的長是方程x2-16x+60=0的兩個根,求直角邊BC的長.

查看答案和解析>>

同步練習冊答案