已知拋物線與它的對稱軸相交于點,與軸交于,與軸正半軸交于.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)設(shè)直線交軸于是線段上一動點(點異于),過作軸交直線于,過作軸于,求當(dāng)四邊形的面積等于時點的坐標(biāo).
解:(1)由題意,知點是拋物線的頂點,
,,拋物線的函數(shù)關(guān)系式為.
(2)由(1)知,點的坐標(biāo)是.設(shè)直線的函數(shù)關(guān)系式為,
則,,.
由,得,,點的坐標(biāo)是.
設(shè)直線的函數(shù)關(guān)系式是,
則解得,.
直線的函數(shù)關(guān)系式是.
設(shè)點坐標(biāo)為,則.
軸,點的縱坐標(biāo)也是.
設(shè)點坐標(biāo)為,
點在直線上,,.
軸,點的坐標(biāo)為,
,,,
,
,,,當(dāng)時,,
而,,
點坐標(biāo)為和.
【解析】(1)由題意可知拋物線的頂點就是A點,因此可將A的坐標(biāo)代入拋物線的解析式中,并根據(jù)對稱軸==1,聯(lián)立方程組即可求出a,c的值,進而可得出拋物線的解析式.
(2)四邊形OPEF是個直角梯形,可先求出AD,AB所在直線的解析式,根據(jù)AD所在直線的解析式設(shè)出P的坐標(biāo),又由于PE∥x軸,P、E兩點的縱坐標(biāo)相同,然后根據(jù)AB所在直線的解析式得出E點的坐標(biāo),進而可求出F點的坐標(biāo).根據(jù)求出的P、E、F三點坐標(biāo),可得出梯形的上下底OF、EP的長以及直角梯形的高EF的長(即E點縱坐標(biāo)的絕對值),根據(jù)梯形的面積公式即可得出關(guān)于梯形的面積與P點坐標(biāo)的函數(shù)解析式,然后將S=代入函數(shù)中即可求出P點的坐標(biāo)
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線經(jīng)過定點A(1,0),它的頂點P是y軸正半軸上的一個動點,P點關(guān)于x軸的對稱點為P′,過P′ 作x軸的平行線交拋物線于B、D兩點(B點在y軸右側(cè)),直線BA交y軸于C點.按從特殊到一般的規(guī)律探究線段CA與CB的比值:
(1)當(dāng)P點坐標(biāo)為(0,1)時,寫出拋物線的解析式并求線段CA與CB的比值;
(2)若P點坐標(biāo)為(0,m)時(m為任意正實數(shù)),線段CA與CB的比值是否與⑴所求的比值相同?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題
(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為
點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直
線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com