已知:點P(a+1,a-1)關(guān)于x軸的對稱點在反比例函數(shù)y=-
8x
(x>0)的圖象上,y關(guān)于x的函數(shù)y=k2x2-(2k+1)x+1的圖象與坐標(biāo)軸只有兩個不同的交點A﹑B,求P點坐標(biāo)和△PAB的面積.
分析:(1)由點P(a+1,a-1)關(guān)于x軸的對稱點在反比例函數(shù)y=-
8
x
(x>0)的圖象上可知(a+1)(-a+1)=-8,求出a即得求P點坐標(biāo)
(2)在y=k2x2-(2k+1)x+1中k可能為0(一次函數(shù)y=-x+1),也可能不為0(二次函數(shù)y=k2x2-(2k+1)x+1),根據(jù)題意,結(jié)合一次函數(shù)二次函數(shù)與坐標(biāo)軸交點特點,易求點A、B坐標(biāo),即能求△PAB的面積
解答:解:(1)∵P點關(guān)于x軸的對稱點為(a+1,-a+1),它在y=-
8
x
(x>0)圖象上,且在第四象限
∴(a+1)(-a+1)=-8,即a2=9
∴a=3(a=-3舍去)
∴P(4,2)(2分)精英家教網(wǎng)

(2)當(dāng)k=0時,y=-x+1,
設(shè)一次函數(shù)圖象與x軸交于A,與y軸交于B,則A(1,0),B(0,1)
此時,S△PAB=
1
2
×(1+2)×4-
1
2
×1×1-
1
2
×3×2=
5
2
(4分)
當(dāng)k≠0時,函數(shù)y=k2x2-(2k+1)x+1的圖象為拋物線,與y軸交于B(0,1)
∵它的圖象與坐標(biāo)軸只有兩個交點
∴它的圖象與x軸只有一個交點,設(shè)為A點精英家教網(wǎng)
∴△=(2k+1)2-4k2=0
解得:k=-
1
4
(5分)
∴拋物線y=
1
16
x2-
1
2
x+1=
1
16
(x-4)2
與x軸交于A(4,0)
∴此時,S△PAB=
1
2
×2×4=4

綜合得:△PAB的面積為
5
2
或4.(7分)
點評:此題難度較大,考查一次函數(shù)、二次函數(shù)的圖象和性質(zhì),還滲透分類討論思想,綜合性大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知動點P在函數(shù)y=
1
2x
(x>0)的圖象上運動,PM⊥x軸于點M,PN⊥y軸于點N,線段PM、PN分別與直線AB:y=-x+1交于點E,F(xiàn),則AF•BE的值為( 。
A、4
B、2
C、1
D、
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:點P的坐標(biāo)是(m,-1),且點P關(guān)于x軸對稱的點的坐標(biāo)是(-3,2n),則m=
 
,n=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知C點為線段AB的中點,D點為BC的中點,AB=10cm,求AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A點的坐標(biāo)為(2,0),點B在直線y=-x上運動,當(dāng)線段AB最短時,點B的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個有彈性的球從A點落下到地面,彈起后,到B點又落到高為20cm的平臺上,再彈起到C點,然后,又落到地面(如圖),每次彈起的高度為落下高度的
45
,已知A點離地面比C點離地面高出68cm,那么A′點離地面的高度是
200
200
cm.

查看答案和解析>>

同步練習(xí)冊答案