某產(chǎn)品專賣店出售每件成本為40元的產(chǎn)品,每日銷售量y與銷售單價(jià)x(元)之間滿足函數(shù)關(guān)系y=-6x+600.(規(guī)定銷售期間銷售單價(jià)不低于成本單價(jià),當(dāng)天定的銷售單價(jià)不變)
(1)若不計(jì)其他因素,該專賣店每日獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系;銷售單價(jià)定為多少元時(shí),專賣店可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(2)專賣店原來(lái)設(shè)有兩名營(yíng)業(yè)員,據(jù)統(tǒng)計(jì)周六的促銷日活動(dòng)中銷售量不少于240件,必須增派一名營(yíng)業(yè)員才能保證營(yíng)業(yè)有序進(jìn)行,設(shè)營(yíng)業(yè)員每人每天工資為40元,專賣店周六促銷日活動(dòng)中獲得的利潤(rùn)是2880元,求周六促銷日當(dāng)天產(chǎn)品的銷售單價(jià).
(參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-數(shù)學(xué)公式時(shí),y最大(。┲=數(shù)學(xué)公式

解:(1)w=(x-40)(-6x+600)=-6(x-70)2+27000,
故銷售單價(jià)為70元時(shí),最大利潤(rùn)為27000元;

(2)①設(shè)每件產(chǎn)品應(yīng)定價(jià)x元,由題意列出函數(shù)關(guān)系式
W=(x-40)×(-6x+600)-3×40=2880
即:-6x2+840x-24000-120=2880
解得:x=50或x=90
∵促銷日活動(dòng)中銷售量不少于240件,
∴x=50
∴促銷單價(jià)為50元.
分析:(1)先表示出w與x之間的函數(shù)關(guān)系,然后求最值即可.
(2)由利潤(rùn)=(售價(jià)-成本)×售出件數(shù)-工資,列出函數(shù)關(guān)系式,求出最大值.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的應(yīng)用,由利潤(rùn)=(售價(jià)-成本)×售出件數(shù)-工資,列出函數(shù)關(guān)系式,求出最大值,運(yùn)用二次函數(shù)解決實(shí)際問題,比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案