以3、4為兩邊的三角形的第三邊長(zhǎng)是方程x2-13x+40=0的根,則這個(gè)三角形的周長(zhǎng)為( 。
分析:首先根據(jù)因式分解法解出方程的解,再根據(jù)三角形的三邊關(guān)系可確定X的值,然后再求周長(zhǎng)即可.
解答:解:x2-13x+40=0,
(x-5)(x-8)=0,
則x-5=0,x-8=0,
解得:x1=5,x2=8,
設(shè)三角形的第三邊長(zhǎng)為x,由題意得:4-3<x<4+3,
解得1<x<7,
∴x=5,
三角形周長(zhǎng)為3+4+5=12,
故選:B.
點(diǎn)評(píng):此題主要考查了三角形的三邊關(guān)系,以及因式分解法解一元二次方程,關(guān)鍵是正確求出x的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形OABC,點(diǎn)P在邊OA上(不與端點(diǎn)重合),點(diǎn)Q在邊CO上(不與端點(diǎn)重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請(qǐng)寫出表示這三個(gè)三角形相似的式子,并探究此時(shí)線段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請(qǐng)重新寫出表示這三個(gè)三角形相似的式子,并證明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標(biāo)系,如圖(3),若某拋物線頂點(diǎn)為P,點(diǎn)B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動(dòng)點(diǎn)M(點(diǎn)M與點(diǎn)P、B不重合),作y軸的平行線交拋物線于點(diǎn)N,若記點(diǎn)M的橫坐標(biāo)為m,試求線段MN的長(zhǎng)L與m之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時(shí),L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知矩形OABC,點(diǎn)P在邊OA上(不與端點(diǎn)重合),點(diǎn)Q在邊CO上(不與端點(diǎn)重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請(qǐng)寫出表示這三個(gè)三角形相似的式子,并探究此時(shí)線段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請(qǐng)重新寫出表示這三個(gè)三角形相似的式子,并證明AB:OA=2數(shù)學(xué)公式:3.
(3)在(1)中,若OA=8數(shù)學(xué)公式,OC=8,OP=數(shù)學(xué)公式CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標(biāo)系,如圖(3),若某拋物線頂點(diǎn)為P,點(diǎn)B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動(dòng)點(diǎn)M(點(diǎn)M與點(diǎn)P、B不重合),作y軸的平行線交拋物線于點(diǎn)N,若記點(diǎn)M的橫坐標(biāo)為m,試求線段MN的長(zhǎng)L與m之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時(shí),L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

如圖,已知矩形OABC,點(diǎn)P在邊OA上(不與端點(diǎn)重合),點(diǎn)Q在邊CO上(不與端點(diǎn)重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請(qǐng)寫出表示這三個(gè)三角形相似的式子,并探究此時(shí)線段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請(qǐng)重新寫出表示這三個(gè)三角形相似的式子,并證明AB:OA=2:3.
(3)在(1)中,若OA=8,OC=8,OP=CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標(biāo)系,如圖(3),若某拋物線頂點(diǎn)為P,點(diǎn)B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動(dòng)點(diǎn)M(點(diǎn)M與點(diǎn)P、B不重合),作y軸的平行線交拋物線于點(diǎn)N,若記點(diǎn)M的橫坐標(biāo)為m,試求線段MN的長(zhǎng)L與m之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時(shí),L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察可得最簡(jiǎn)公分母是(x+1)(x-1),方程兩邊乘最簡(jiǎn)公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.

【解答】

(2)方程的兩邊同乘(x+1)(x-1),得

2(x-1)+4=x2-1,

x2-2x-3=0,

(x-3)(x+1)=0,

解得x1=3,x2=-1,

檢驗(yàn):把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,

x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,

則原方程的解為:x=3.

【點(diǎn)評(píng)】此題考查了實(shí)數(shù)的混合運(yùn)算與分式方程的解法.此題難度不大,但注意掌握絕對(duì)值的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)、零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值,注意解分式方程一定要驗(yàn)根.

20.(本題滿分5分)如圖,已知△ABC,且∠ACB=90°。

(1)請(qǐng)用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明);

①以點(diǎn)A為圓心,BC邊的長(zhǎng)為半徑作⊙A;

②以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC.

(2)請(qǐng)判斷直線BD與⊙A的位置關(guān)系(不必證明).

 


查看答案和解析>>

同步練習(xí)冊(cè)答案