【題目】如圖, 為線段上一動(dòng)點(diǎn),分別過點(diǎn)、作, ,連接、,已知, , ,設(shè).
(1)用含的代數(shù)式表示的長(zhǎng);
(2)請(qǐng)問點(diǎn)在什么位置時(shí), 的值最小,求出這個(gè)最小值;
(3)根據(jù)(2)中的規(guī)律和結(jié)論,構(gòu)圖求出代數(shù)式的最小值.
【答案】(1)用含x的代數(shù)式表示的長(zhǎng)
(2)當(dāng)A、C、E三點(diǎn)共線時(shí)取最小值,最小值為10;
(3)代數(shù)式最小值為
【解析】試題分析:
試題分析:(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;
(2)若點(diǎn)C不在AE的連線上,根據(jù)三角形中任意兩邊之和>第三邊知,AC+CE>AE,故當(dāng)A、C、E三點(diǎn)共線時(shí),AC+CE的值最;
(3)由(1)(2)的結(jié)果可作BD=12,過點(diǎn)B作AB⊥BD,過點(diǎn)D作ED⊥BD,使AB=2,ED=3,連接AE交BD于點(diǎn)C,則AE的長(zhǎng)即為代數(shù)式 +的最小值,然后構(gòu)造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性質(zhì)可求得AE的值.
試題解析:(1)由勾股定理知
∴
(2)當(dāng)、、三點(diǎn)共線時(shí)取最小值,如下圖
∴在和中
∴
∴
∴
∴
∴
∴
∴
(3)根據(jù)(2)中規(guī)律可以構(gòu)造出如圖所示
由(2)中方法可得:
∴
∴
∴
∴
∴代數(shù)式最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°,
(1)求證;BF∥DE.
(2)如果DE⊥AC于點(diǎn)E,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元;
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個(gè),但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A=∠B=∠C;
④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能確定△ABC為直角三角形的條件有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,△ABC的外角∠DAC和∠ACF的平分線交于點(diǎn)E,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一塊四邊形綠地的示意圖,其中AB長(zhǎng)為24米,BC長(zhǎng)15米,CD長(zhǎng)為20米,DA長(zhǎng)7米,∠C=90°,求綠地ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點(diǎn)A在直線PQ上運(yùn)動(dòng),點(diǎn)B在直線MN上運(yùn)動(dòng).
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長(zhǎng)線相交于E、F,在△AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com