【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點EAD邊上的一個動點(不與A,D重合),EF∥ABBC于點F,點GCD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____

【答案】1或

【解析】

由四邊形ABCD是菱形,得到BCAD,由于EFAB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EFAB,于是得到EF=AB=,當EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,GE=GF時,根據(jù)勾股定理得到DE=

∵四邊形ABCD是菱形,∠B=120°,

∴∠D=B=120°,A=180°-120°=60°,BCAD,

EFAB,

∴四邊形ABFE是平行四邊形,

EFAB,

EF=AB=DEF=A=60°,EFC=B=120°,

DE=DG,

∴∠DEG=DGE=30°,

∴∠FEG=30°,

EFG為等腰三角形時,

EF=EG時,EG=

如圖1,

過點DDHEGH,

EH=EG=,

RtDEH中,DE==1,

GE=GF時,如圖2,

過點GGQEF,

EQ=EF=,在RtEQG中,∠QEG=30°,

EG=1,

過點DDPEGP,

PE=EG=,

同①的方法得,DE=

EF=FG時,由∠EFG=180°-2×30°=120°=CFE,此時,點C和點G重合,點F和點B重合,不符合題意,

故答案為:1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點A2,m).

(1)求反比例函數(shù)的解析式;

(2)B軸的上,且OA=BA,反比例函數(shù)圖像上有一點C,且∠ABC=90°,求點C坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線L1:y=﹣x2+2x+3x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,在L1上任取一點P,過點P作直線l⊥x軸,垂足為D,將L1沿直線l翻折得到拋物線L2,交x軸于點M,N(點M在點N的左側(cè)).

(1)當L1L2重合時,求點P的坐標;

(2)當點P與點B重合時,求此時L2的解析式;并直接寫出L1L2中,y均隨x的增大而減小時的x的取值范圍;

(3)連接PM,PB,設(shè)點P(m,n),當n= m時,求△PMB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小賢與小杰在探究某類二次函數(shù)問題時,經(jīng)歷了如下過程:

求解體驗

(1)已知拋物線經(jīng)過點(-1,0),= ,頂點坐標為 ,該拋物線關(guān)于點(0,1)成中心對稱的拋物線的表達式是 .

抽象感悟

我們定義:對于拋物線,軸上的點為中心,作該拋物線關(guān)于

對稱的拋物線 ,則我們又稱拋物線為拋物線衍生拋物線,點衍生中心”.

(2)已知拋物線關(guān)于點的衍生拋物線為,若這兩條拋物線有交點,求的取值范圍.

問題解決

(3) 已知拋物線

①若拋物線的衍生拋物線為,兩拋物線有兩個交點,且恰好是它們的頂點,求的值及衍生中心的坐標;

②若拋物線關(guān)于點的衍生拋物線為 ,其頂點為;關(guān)于點的衍生拋物線為,其頂點為;…;關(guān)于點的衍生拋物線為,其頂點為;…(

正整數(shù)).的長(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=3cm,AC=4cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖),圖是平面圖.光明中學的數(shù)學興趣小組針對風電塔桿進行了測量,甲同學站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG4米,兩處的水平距離AG23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形中,,中點,邊上一動點,連接,以為邊并在的右側(cè)作等邊,連接,則的最小值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù),,是常數(shù),且中的的部分對應值如下表所示,則下列結(jié)論中,正確的個數(shù)有(

時,;時,的值隨值的增大而減;

方程有兩個不相等的實數(shù)根.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王的學校舉行了一次年級考試,考了若干門課程,后加試了一門,小王考得分,這時小王的平均成績比最初的平均成績提高了分.后來又加試了一門,小王考得分,這時小王的平均成績比最初的平均成績下降了分,則小王共考了(含加試的兩門)________門課程,最后平均成績?yōu)?/span>________分.

查看答案和解析>>

同步練習冊答案