【題目】若有理數(shù)x,y滿足|y|=2,x2=64,且|x﹣y|=x﹣y,求x+y的值.

【答案】62.

【解析】

直接利用絕對(duì)值的性質(zhì)以及偶次方的性質(zhì)分析得出答案.

解:∵|x﹣y|=x﹣y,

x﹣y≥0,

|y|=2,x2=64,

y=±2,x=±4,

∴當(dāng)x=4時(shí),y=±2,

x=﹣4時(shí),不合題意,

x+y=62.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.

(1)在方格紙中畫以AB為斜邊的等腰直角三角形ABE;

(2)在方格紙中畫以CD為一邊的三角形CDF,點(diǎn)F在小正方形的頂點(diǎn)上,且三角形CDF的面積為5,tanDCF=,連接EF,并直接寫出線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)M(a,﹣5)與點(diǎn)N(﹣2,b)關(guān)于x軸對(duì)稱,則a+b=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+4經(jīng)過點(diǎn)(1,2),求不等式kx+4≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a是最大的負(fù)整數(shù),b2的相反數(shù),c是平方最小的有理數(shù),則a+b+c的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了有效控制酒后駕駛,石家莊市某交警的汽車在一條南北方向的大街上巡邏,規(guī)定向北為正,向南為負(fù),已知從出發(fā)點(diǎn)開始所行使的路程(單位:千米)為:+3,﹣2,+1,+2,﹣3,﹣1,+2
(1)若此時(shí)遇到緊急情況要求這輛汽車回到出發(fā)點(diǎn),請(qǐng)問司機(jī)該如何行使?
(2)當(dāng)該輛汽車回到出發(fā)點(diǎn)時(shí),一共行駛了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥BC,要使四邊形ABCD為平行四邊形,需要增加的一個(gè)條是:_____.(只填一個(gè)你認(rèn)為正確的條件即可,不添加任何線段與字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD,ADBC,分別添加下列條件:①ABCD;ABCDADBC;④∠BD;⑤∠AC,其中能使四邊形ABCD成為平行四邊形的條件有(  )

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AB∥CD,猜想∠BPD與∠B,∠D的關(guān)系,說出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,并說明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,不需要說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案