如圖,BC為半圓O的直徑,A、D為半圓O上兩點(diǎn),AB=,BC=2,則∠D的度數(shù)是

[  ]

A.
B.
C.
D.
答案:D
解析:

連結(jié)AC

∵BC是⊙O的直徑

∴∠BAC=90°

又∵ABBC2

∴由勾股定理得:AC=1

∴由勾股定理逆定理得:∠B=30°

∴四邊形ABCD內(nèi)接于⊙O

∴對角和180°

∴∠D=180°-30°=150°

∴選D


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知.如圖,BC為半圓O的直徑,F(xiàn)是半圓上異于B、C的一點(diǎn),A是
BF
的中點(diǎn),AD⊥BC于點(diǎn)D,BF交精英家教網(wǎng)AD于點(diǎn)E.
(1)求證:BE•BF=BD•BC;
(2)試比較線段BD與AE的大小,并說明道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,BC為半圓O的直徑,AD⊥BC,垂足為D,過點(diǎn)B作弦BF交AD于點(diǎn)E,交半圓O于點(diǎn)F,弦AC與BF交于點(diǎn)H,且AE=BE.
求證:(1)
AB
=
AF
;(2)AH•BC=2AB•BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安溪縣質(zhì)檢)如圖,BC為半圓O的直徑,D為AC的中點(diǎn),四邊形ABCD的對角線AC、BD相交于點(diǎn)E.
(1)求證:△ABE∽△DBC;
(2)若AB=3,BC=5,cos∠ABE=
2
5
5
,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BC為半圓O的直徑,CA為切線,AB交半圓O于點(diǎn)E,EF⊥BC于點(diǎn)F,連接EC.則圖中與△CEF相似的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BC為半圓O的直徑,D為半圓上一點(diǎn),過點(diǎn)D作⊙O的切線AD,作BA⊥DA于點(diǎn)A,BA交半圓于點(diǎn)E,已知BC=10,AD=4,若直線CE與以點(diǎn)O為圓心,r為半徑的圓相切,則r等于(  )

查看答案和解析>>

同步練習(xí)冊答案