【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小紅和小明都沒有抽到“論語”的概率是多少?請用畫樹狀圖或列表的方法進(jìn)行說明.
【答案】(1)小麗恰好抽中“三字經(jīng)”的概率為;(2)小紅和小明都沒有抽到“論語”的概率是.
【解析】分析:(1)直接利用概率公式求解;
(2)先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結(jié)果數(shù),然后根據(jù)概率公式求解.
詳解:(1)她從中隨機(jī)抽取一個比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率=;
(2)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù);
其中小明和小紅都沒有抽到“論語”的結(jié)果數(shù)為6;
所以小明和小紅都沒有抽到“三字經(jīng)”的概率=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC且AB=BC,DE⊥CD且DE=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計算圖中實(shí)線所圍成的圖形的面積S是( )
A. 36B. 48C. 72D. 108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F,連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷( )
A. 甲正確,乙錯誤 B. 乙正確,甲錯誤
C. 甲、乙均正確 D. 甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(5,3),點(diǎn)B(-3,3),過點(diǎn)A的直線(m為常數(shù))與直線x=1交于點(diǎn)P,與x軸交于點(diǎn)C,直線BP與x軸交于點(diǎn)D。
(1)求點(diǎn)P的坐標(biāo);
(2)求直線BP的解析式,并直接寫出△PCD與△PAB的面積比;
(3)若反比例函數(shù)(k為常數(shù)且k≠0)的圖象與線段BD有公共點(diǎn)時,請直接寫出k的最大值或最小值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點(diǎn)P滿足,則點(diǎn)P到A、B兩點(diǎn)距離之和PA+PB的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的水上樂園有一批4人座的自劃船,每艘可供1至4位游客乘坐游湖,因景區(qū)加大宣傳,預(yù)計今年游客將會增加,水上樂園的工作人員隨機(jī)抽取了去年某天中出租的80艘次4人自劃船,統(tǒng)計了每艘船的乘坐人數(shù),制成了如下統(tǒng)計圖.
(1)扇形統(tǒng)計圖中,“乘坐1人”所對應(yīng)的圓心角度數(shù)為 ;
(2)所抽取的自劃船每艘乘坐人數(shù)的眾數(shù)是 ;
(3)若每天將增加游客150人,那么每天需多安排多少艘次4人座的自劃船才能滿足需求?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,延長BC至E點(diǎn),使CE=BC,點(diǎn)P是AD邊上的動點(diǎn),以cm/s的速度從D點(diǎn)到A點(diǎn)方向運(yùn)動,連接AC、CP、DE.
(1)若AD=,運(yùn)動時間為t,當(dāng)四邊形PCED為平行四邊形時,求t的值;
(2)M是CP的中點(diǎn),PF⊥AC,垂足為F,PG⊥CD,垂足為G,連接MF,MG,求證:∠GMF=2∠ACD.
(3)在(2)的條件下,若∠B=75°,∠ACB=45°,AC=,連接GF,求△MGF周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),的邊垂直于軸,垂足為,已知.反比例函數(shù)的圖象經(jīng)過的中點(diǎn),交于點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)求經(jīng)過、兩點(diǎn)的直線所對應(yīng)的函數(shù)表達(dá)式;
(3)設(shè)點(diǎn)是軸上的動點(diǎn),請直接寫出使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數(shù)互為相反數(shù).
(1)填空:a= ,b= ,c= ;
(2)先化簡,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com