【題目】如圖,四邊形ABCD中,AD∥BC,CM是∠BCD的平分線,且CM⊥AB,M為垂足,AM= AB.若四邊形ABCD的面積為 ,則四邊形AMCD的面積是 .
【答案】1
【解析】解:如圖所示:延長(zhǎng)BA、CD,交點(diǎn)為E.
∵CM平分∠BCD,CM⊥AB,
∴MB=ME.
又∵AM= AB,
∴AE= AB.
∴AE= BE.
∵AD∥BC,
∴△EAD∽△EBC.
∴ = .
∴S四邊形ADBC= S△EBC= .
∴S△EBC= .
∴S△EAD= × = .
∴S四邊形AMCD= S△EBC﹣S△EAD= ﹣ =1.
所以答案是:1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識(shí),掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,CD為⊙O的弦,連接AC、BD,半徑CO交BD于點(diǎn)E,過(guò)點(diǎn)C作切線,交AB的延長(zhǎng)線于點(diǎn)F,且∠CFA=∠DCA.
(1)求證:OE⊥BD;
(2)若BE=2,CE=1 ①求⊙O的半徑;
②求△ACF的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知平行四邊形ABCD頂點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B在y軸上,且AD∥BC∥x軸,過(guò)B,C,D三點(diǎn)的拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,2),點(diǎn)F(m,6)是線段AD上一動(dòng)點(diǎn),直線OF交BC于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)設(shè)四邊形ABEF的面積為S,請(qǐng)求出S與m的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)如圖2,過(guò)點(diǎn)F作FM⊥x軸,垂足為M,交直線AC于P,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點(diǎn)H,G,試求線段MN的最小值,并直接寫(xiě)出此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長(zhǎng)度得到點(diǎn)A,過(guò)點(diǎn)A作y軸的平行線交反比例函數(shù)y= 的圖象于點(diǎn)B,AB= .
(1)求反比例函數(shù)的解析式;
(2)若P(x1 , y1)、Q(x2 , y2)是該反比例函數(shù)圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2 , 指出點(diǎn)P、Q各位于哪個(gè)象限?并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.
已知拋物線y=﹣ x2﹣ x+2 與其“夢(mèng)想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“夢(mèng)想直線”的解析式為 , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱(chēng)軸翻折,點(diǎn)C的對(duì)稱(chēng)點(diǎn)為N,若△AMN為該拋物線的“夢(mèng)想三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱(chēng)軸上運(yùn)動(dòng)時(shí),在該拋物線的“夢(mèng)想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,BE⊥AC,垂足E在CA的延長(zhǎng)線上,DF⊥AC,垂足F在AC的延長(zhǎng)線上,求證:AE=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中 過(guò)點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com