分析 (1)根據(jù)已知條件得到k=4>0,根據(jù)反比例函數(shù)的性質(zhì)即可得到結(jié)論;
(2)由正比例函數(shù)y=x的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象有一個(gè)交點(diǎn)的縱坐標(biāo)是2.得到這個(gè)交點(diǎn)的坐標(biāo)為(2,2),把點(diǎn)(2,2)代入y=$\frac{k}{x}$,得2=$\frac{k}{2}$,即可得到結(jié)論;
(3)把x=-3代入y=$\frac{4}{x}$,即可得到結(jié)果;
(4)把x=$\frac{1}{2}$代入y=$\frac{4}{x}$,得y=8;把x=4代入y=$\frac{4}{x}$,得y=1;于是得到結(jié)論.
解答 解:(1)∵正比例函數(shù)y=x的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象有一個(gè)交點(diǎn)的縱坐標(biāo)是2,
∴交點(diǎn)坐標(biāo)為(2,2),
∴k=4>0,
∴這個(gè)反比例函數(shù)的圖象位于第一、三象限;在圖象的每一支上,y隨x的增大而減;
故答案為:第一、三,減小;
(2)∵正比例函數(shù)y=x的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象有一個(gè)交點(diǎn)的縱坐標(biāo)是2.
∴這個(gè)交點(diǎn)的坐標(biāo)為(2,2),
把點(diǎn)(2,2)代入y=$\frac{k}{x}$,得2=$\frac{k}{2}$,
∴k=4,
∴這個(gè)反比例函數(shù)的解析式是y=$\frac{4}{x}$;
(3)把x=-3代入y=$\frac{4}{x}$,得y=$\frac{4}{-3}$=-$\frac{4}{3}$,
(4)把x=$\frac{1}{2}$代入y=$\frac{4}{x}$,得y=8;
把x=4代入y=$\frac{4}{x}$,得y=1;
∴當(dāng)$\frac{1}{2}$<x<4時(shí),求y的取值范圍是 1<y<8.
點(diǎn)評 此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,函數(shù)圖象上點(diǎn)的坐標(biāo)特征,用待定系數(shù)法求函數(shù)解析式,反比例函數(shù)的增減性,正確的求出函數(shù)的解析式是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線AB和直線BA是同一條直線 | |
B. | 射線AB和射線BA是同一條射線 | |
C. | 線段AB和射線AB都是直線AB的一部分 | |
D. | ∠ABC和∠CBA是同一個(gè)角 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com