如圖,半圓O的直徑AB=2,四邊形COAD為正方形,連接AC,若正方形內(nèi)三部分的面積分別記為S1,S2,S3,則S1:S2:S3=________.

(4-π):(π-2):2
分析:根據(jù)正方形面積計算公式求正方形COAD的面積,根據(jù)直角三角形面積計算公式求S3,根據(jù)扇形的面積計算公式求S2
解答:由題意知OB=OA=1,
正方形COAD的面積=1×1=1,
S3=×1×1=,
S2=×π×1×1-S3=,
S1=1-S2-S3=1-()-=1-
S1:S2:S3=():():(
整理得S1:S2:S3=(4-π):(π-2):2,
故答案為 (4-π):(π-2):2.
點評:本題考查了扇形,正方形,直角三角形的面積計算方法,考查了正方形各邊均相等的性質(zhì),本題準確計算S1、S2、S3是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB,BC,CD分別與半圓O切于點A,E,D.
(1)設AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
(2)如果CD=6,判斷四邊形ABCD的形狀;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB、BC、CD分別與半圓O切于點A、E、D.
(1)線段AB、CD與BC之間有什么關(guān)系?并說明理由;
(2)設AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓O的直徑AB=12cm,射線BM從與線段AB重合的位置起,以每秒6°的旋轉(zhuǎn)速度繞B點按順時針方向旋轉(zhuǎn)至BP的位置,BP交半圓于E,設旋轉(zhuǎn)時間為ts(0<t<15),
(1)求E點在圓弧上的運動速度(即每秒走過的弧長),結(jié)果保留π.
(2)設點C始終為
AE
的中點,過C作CD⊥AB于D,AE交CD、CB分別于G、F,過F作F精英家教網(wǎng)N∥CD,過C作圓的切線交FN于N.
求證:①CN∥AE;
②四邊形CGFN為菱形;
③是否存在這樣的t值,使BE2=CF•CB?若存在,求t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓O的直徑為6cm,∠BAC=30°,則陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓O的直徑AB=20,將半圓O繞點B順針旋轉(zhuǎn)45°得到半圓O′,與AB交于點P.
(1)求AP的長.
(2)求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習冊答案