【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A為平面內(nèi)一點(diǎn),給出如下定義:過點(diǎn)A作AB⊥y軸于點(diǎn)B,作正方形ABCD(點(diǎn)A,B,C,D順時針排列),即稱正方形ABCD為以A為圓心,OA為半徑的⊙A的“友好正方形”.
(1)如圖1,若點(diǎn)A的坐標(biāo)為(1,1),則⊙A的半徑為 .
(2)如圖2,點(diǎn)A在雙曲線y= (x>0)上,它的橫坐標(biāo)是2,正方形ABCD是⊙A的“友好正方形”,試判斷點(diǎn)C與⊙A的位置關(guān)系,并說明理由.
(3)如圖3,若點(diǎn)A是直線y=﹣x+2上一動點(diǎn),正方形ABCD為⊙A的“友好正方形”,且正方形ABCD在⊙A的內(nèi)部時,請直接寫出點(diǎn)A的橫坐標(biāo)m的取值范圍.
【答案】
(1)
(2)解:如圖2中,
∵A(2, ),∴O A=
∵AC=2 = =
∴O A<A C,
∴點(diǎn)C在⊙A外.
(或如圖,利用勾股定理直觀分析:∵OB<BC,AB=AB,∴O A<A C也可以)
(3)解:如圖3中,
∵點(diǎn)A是直線y=﹣x+2上一動點(diǎn),直線與坐標(biāo)軸是夾角為45°,
又∵四邊形ABCD是正方形,
∴點(diǎn)C(0,2),
∴當(dāng)AC<OA時,正方形ABCD在⊙A內(nèi)部,
∵AC=OA時,點(diǎn)A(1,1),
∴m<1時,AC<OA,
∵m=0時,正方形不存在,
∴m<1且m≠0時,正方形ABCD在⊙A內(nèi)部
【解析】解:(1)如圖1中,連接OA.
∵A(1,1),AB⊥y軸,
∴AB=OB=1,∠ABO=90°,
∴OA= = = ,
∴⊙A的半徑為 .
所以答案是 ;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是( )
A.88°
B.92°
C.106°
D.136°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P,Q是反比例函數(shù)y= 圖象上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料: “懷山俊秀,柔水有情”﹣懷柔,一直受到世人的青睞.早在上世紀(jì)90年代,聯(lián)合國第4屆世界婦女大會NGO論壇的舉辦使懷柔蜚聲海內(nèi)外,此后,隨著世界養(yǎng)生大會、國際青少年嘉年華、全國汽車?yán)惖纫幌盗谢顒淤愂碌某晒εe辦,為這座國際交往新城聚集了龐大的人氣.2014年11月11日,全世界的眼光再次聚焦在北京懷柔雁棲湖,這里成功舉辦了第22次APEC領(lǐng)導(dǎo)人峰會.現(xiàn)如今懷柔已成為以自然風(fēng)光游為基礎(chǔ),休閑度假游、鄉(xiāng)村美食游、滿族風(fēng)情游為特色,影視文化游、健身養(yǎng)生游、競技賽事游為時尚的多元化旅游勝地.
隨著懷柔旅游業(yè)的迅速發(fā)展,也帶動了懷柔的經(jīng)濟(jì)收入.據(jù)統(tǒng)計,2011年全年接待游客1047萬人次,比上一年增長5.3%;2012年全年接待游客1085萬人次,比上一年增長3.7%; 2013年全年接待游客1107.6萬人次,比上一年增長2%; 2014年全年接待游客1135萬人次,比上一年增長2.4%;2015年全年接待游客1297.4萬人次,比上一年增長14.3%.(以上數(shù)據(jù)來源于懷柔信息網(wǎng))根據(jù)以上材料解答下列問題:
(1)用折線圖將2011﹣2015年懷柔區(qū)全年接待游客量表示出來,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)繪制的折線圖中提供的信息,預(yù)估 2016年懷柔區(qū)全年接待游覽客量約萬人次,你的預(yù)估理由是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,BD,CE交于點(diǎn)O,F(xiàn)為BC的中點(diǎn),連接EF,DF,DE,則下列結(jié)論:①EF=DF;②ADAC=AEAB;③△DOE∽△COB;④若∠ABC=45°時,BE= FC. 其中正確的是(把所有正確結(jié)論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,E,F(xiàn)分別是AC,BC邊上一點(diǎn).
(1)求證: ;
(2)若CE= AC,BF= BC,求∠EDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)A,B的坐標(biāo)分別為(4,0)、(4,n),若經(jīng)過點(diǎn)O、A的拋物線y=﹣x2+bx+c的頂點(diǎn)C落在邊OB上,則圖中陰影部分圖形的面積和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對稱軸對稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com