如圖.在△ABC中,AB=AC,F(xiàn)為AC上一點(diǎn),F(xiàn)D⊥BC于D,DE⊥AB于E,∠AFD=145°,求∠A和∠EDF的值.
分析:先根據(jù)等腰三角形等邊對(duì)等角的性質(zhì)得到∠B=∠C,利用等角的余角相等和已知角可求出∠EDB的數(shù),從而可求得∠EDF的度數(shù),再根據(jù)四邊形的內(nèi)角和為
360°即可求出∠A的度數(shù).
解答:解:∵AB=AC,
∴∠B=∠C,
∵FD⊥BC于D,DE⊥AB于E,
∴∠BED=∠FDC=90°,
∵∠AFD=145°,
∴∠EDB=∠CFD=180°-145°=35°
∴∠EDF=90°-∠EDB=90°-35°=55°,
∴∠A=360°-90°-55°-145°=70°.
點(diǎn)評(píng):本題主要考查了等腰三角形與等邊三角形的性質(zhì)及三角形外角性質(zhì)等知識(shí).一般是利用等腰三角形的性質(zhì)得出有關(guān)角的度數(shù),進(jìn)而求出所求角的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案