【題目】寬與長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形蘊(yùn)藏著豐富的美學(xué)價(jià)值,給我們以協(xié)調(diào)和勻稱的美感.我們可以用這樣的方法畫(huà)出黃金矩形:如圖,作正方形ABCD,分別取AD,BC的中點(diǎn)E,F,連接EFDF,作∠DFC,的平分線,交AD的延長(zhǎng)線于點(diǎn)H,作HGBC,交I3C的延長(zhǎng)線于點(diǎn)G,則下列矩形是黃金矩形的是( )

A. 矩形ABFE B. 矩形EFCD C. 矩形EFGH D. 矩形DCGH

【答案】C

【解析】設(shè)正方形ABCD的邊長(zhǎng)為2,則DE=1

在直角三角形DFC中,DF=.

AHBG

∴∠AHF=∠HFG.

FH平分DFC,

∴∠DFH=∠HFG,

∴∠DFH=∠AHF,

DF=DH=,

EH=1+,

,

矩形EFGH為黃金矩形.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,且點(diǎn)在點(diǎn)的右側(cè).

)求菱形的周長(zhǎng).

)若⊙沿軸向右以每秒個(gè)單位長(zhǎng)度的速度平移,菱形沿軸向左以每秒個(gè)單位長(zhǎng)度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為(秒),當(dāng)⊙相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點(diǎn)所在的直線的距離為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,連接對(duì)角線AC

1)在邊AD上確定一點(diǎn)E,使EA=EC;在邊BC上確定一點(diǎn)F,使FA=FC;(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)

2)在(1)的條件下,連接AF,CE.求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過(guò)第一、二、三象限,且與反比例函數(shù)圖象相交于兩點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn), 且點(diǎn)橫坐標(biāo)是點(diǎn)縱坐標(biāo)的2倍.

1)求反比例函數(shù)的解析式;

2)設(shè)點(diǎn)橫坐標(biāo)為, 面積為

的函數(shù)關(guān)系式,并求出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高高地路燈掛在路邊的上方,高傲而明亮,小明拿著一根米長(zhǎng)的竹竿,想量一量路燈的高度,直接量是不可能的,于是,他走到路燈旁的一個(gè)地方,豎起竹竿,這時(shí),他量了一下竹竿的影長(zhǎng)正好是米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長(zhǎng)度(即米),他又豎起竹竿,這時(shí)竹竿的影長(zhǎng)正好是一根竹竿的長(zhǎng)度(即米).此時(shí),小明抬頭瞧瞧路燈,若有所思地說(shuō):“噢,原來(lái)路燈有米高呀!”(如圖所示)同學(xué)們,你覺(jué)得小明的判斷對(duì)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBCAE平分∠BADBC于點(diǎn)E,AEDE,∠1+2=90°M、N分別是BA,CD延長(zhǎng)線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F,下列結(jié)論:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F為定值.其中結(jié)論正確的有(

A. 4個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C60米的點(diǎn)D(點(diǎn)D與樓底C在同一水平上)出發(fā),沿斜面坡度為i=l 的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53,求樓房AC的高度(參考數(shù)據(jù):sin53=, cos53=, tan53=, ≈1.732,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個(gè)不等實(shí)根x1、x2

1)求實(shí)數(shù)k的取值范圍

2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x,y的方程組

1請(qǐng)直接寫(xiě)出方程的所有正整數(shù)解

2若方程組的解滿足x+y=0,m的值

3無(wú)論實(shí)數(shù)m取何值,方程x2y+mx+5=0總有一個(gè)固定的解,請(qǐng)直接寫(xiě)出這個(gè)解?

查看答案和解析>>

同步練習(xí)冊(cè)答案