如圖,在直角梯形ABCD中,AD∥BC,AD⊥DC,點(diǎn)A關(guān)于對(duì)角線BD的對(duì)稱點(diǎn)F剛好落在腰DC上,連接AF交BD于點(diǎn)E,AF的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)G,M,N分別是BG,DF的中點(diǎn).
(1)求證:四邊形EMCN是矩形;
(2)若AD=2,S梯形ABCD=,求矩形EMCN的長(zhǎng)和寬.
解:(1)證明:∵點(diǎn)A、F關(guān)于BD對(duì)稱,∴AD=DF,DE⊥AF。
又∵AD⊥DC,∴△ADF、△DEF是等腰直角三角形。∴∠DAF=∠EDF=45°。
∵AD∥BC,∴∠G=∠GAF=45°!唷鰾GE是等腰直角三角形。
∵M(jìn),N分別是BG,DF的中點(diǎn),∴EM⊥BC,EN⊥CD。
又∵AD∥BC,AD⊥DC,∴BC⊥CD!嗨倪呅蜤MCN是矩形。
(2)由(1)可知,∠EDF=45°,BC⊥CD,∴△BCD是等腰直角三角形。∴BC=CD,
∴S梯形ABCD=(AD+BC)•CD=(2+CD)•CD=,即CD2+2CD﹣15=0。
解得CD=3,CD=﹣5(舍去)。
∵△ADF、△DEF是等腰直角三角形,∴DF=AD=2。
∵N是DF的中點(diǎn),∴EN=DN=DF=×2=1。
∴CN=CD﹣DN=3﹣1=2。
∴矩形EMCN的長(zhǎng)和寬分別為2,1。
【解析】
試題分析:(1)根據(jù)軸對(duì)稱的性質(zhì)可得AD=DF,DE⊥AF,判斷出△ADF、△DEF是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出∠DAF=∠EDF=45°,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠BCE=45°,然后判斷出△BGE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得EM⊥BC,EN⊥CD,再根據(jù)矩形的判定證明即可。
(2)判斷出△BCD是等腰直角三角形,然后根據(jù)梯形的面積求出CD的長(zhǎng),再根據(jù)等腰直角三角形的性質(zhì)求出DN,即可得解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com