【題目】如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標(biāo)分別為(3,2),(﹣1,﹣1),則兩個正方形的位似中心的坐標(biāo)是

【答案】(1,0)(﹣5,﹣2).

【解析】

試題分析:本題主要考查位似變換中對應(yīng)點的坐標(biāo)的變化規(guī)律.正方形ABCD和正方形OEFG中A和點F的坐標(biāo)分別為(3,2),(﹣1,﹣1),E(﹣1,0)、G(0,﹣1)、D(5,2)、B(3,0)、C(5,0),(1)當(dāng)E和C是對應(yīng)頂點,G和A是對應(yīng)頂點時,位似中心就是EC與AG的交點,設(shè)AG所在直線的解析式為y=kx+b(k0),,解得此函數(shù)的解析式為y=x﹣1,與EC的交點坐標(biāo)是(1,0);(2)當(dāng)A和E是對應(yīng)頂點,C和G是對應(yīng)頂點時,位似中心就是AE與CG的交點,設(shè)AE所在直線的解析式為y=kx+b(k0),,解得,故此一次函數(shù)的解析式為y=x+,同理,設(shè)CG所在直線的解析式為y=kx+b(k0),,解得,故此直線的解析式為y=x﹣1,①②聯(lián)立方程組,解得,故AE與CG的交點坐標(biāo)是(﹣5,﹣2).

故答案為:(1,0),(﹣5,﹣2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是ABC的外接圓,AB是O的直徑,D為O上一點,ODAC,垂足為E,連接BD

(1)求證:BD平分ABC;

(2)當(dāng)ODB=30°時,求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,某校九年級學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:

(1)求全班學(xué)生人數(shù)和m的值.

(2)直接出該班學(xué)生的中考體育成績的中位數(shù)落在哪個分數(shù)段.

(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.

分組

分數(shù)段(分)

頻數(shù)

A

36x41

2

B

41x46

5

C

46x51

15

D

51x56

m

E

56x61

10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三角形的三個內(nèi)角的比是1:2:3,最短邊長為1cm,最長邊長為2cm,則這個三角形三個角度數(shù)分別是______,另外一邊的平方是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:
①﹣|﹣ |=
②﹣(﹣6)=
③(﹣1)99=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于P(a,b)和點Q(a,b′),給出如下定義:若b′=,則稱點Q為點P的限變點.例如:點(2,3)的限變點的坐標(biāo)是(2,3),點(﹣2,5)的限變點的坐標(biāo)是(﹣2,﹣5).

(1)點(,1)的限變點的坐標(biāo)是 ;

(2)判斷點A(﹣2,﹣1)、B(﹣1,2)中,哪一個點是函數(shù)y=圖象上某一個點的限變點?并說明理由;

(3)若點P(a,b)在函數(shù)y=﹣x+3的圖象上,其限變點Q(a,b′)的縱坐標(biāo)的取值范圍是﹣6b′﹣3,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角三角形的兩條直角邊的長恰好是方程2x2-8x+7=0的兩個根,求這個直角三角形的斜邊長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的一塊地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡﹣2b﹣2(a﹣b)的結(jié)果是_____

查看答案和解析>>

同步練習(xí)冊答案