已知m、n滿足|m-12|+(n-m+10)2=0.
(1)求m、n的值;
(2)已知線段AB=m,在直線AB上取一點(diǎn)P,恰好是AP=nPB,點(diǎn)Q為BP的中點(diǎn),求線段AQ的長.
解:(1)∵|m-12|+(n-m+10)
2=0,
∴m-12=0,n-m+10=0,
∴m=12,n=2;
(2)線段AB=12,AP=2PB,
當(dāng)點(diǎn)P線段AB上,如圖1,
∵PA+PB=AB,
而AB=12,AP=2PB,
∴2PB+PB=12,
∴PB=4,AP=8,
又∵點(diǎn)Q為BP的中點(diǎn),
∴PQ=
PB=2,
∴AQ=AP+PQ=8+2=10;
當(dāng)點(diǎn)P線段AB的延長線上,如圖2,
∵PA=PB+AB,
而AB=12,AP=2PB,
∴12+PB=2PB,
∴PB=12,
又∵點(diǎn)Q為BP的中點(diǎn),
∴BQ=
PB=6,
∴AQ=AB+BQ=12+6=18,
所以線段AQ的長為10或18.
分析:(1)根據(jù)非負(fù)數(shù)的性質(zhì)可得到m-12=0,n-m+10=0,即可求出m、n的值;
(2)線段AB=12,AP=2PB.討論:當(dāng)點(diǎn)P線段AB上,則PA+PB=AB,即2PB+PB=12,可計(jì)算得到PB=4,AP=8,又點(diǎn)Q為BP的中點(diǎn),則PQ=
PB=2,利用AQ=AP+PQ求出AQ;
當(dāng)點(diǎn)P線段AB的延長線上,則PA=PB+AB,即12+PB=2PB,得到PB=12,又點(diǎn)Q為BP的中點(diǎn),則BQ=
PB=6,利用AQ=AB+BQ可計(jì)算出AQ的長.
點(diǎn)評:本題考查了兩點(diǎn)間的距離:兩點(diǎn)之間的連線段的長叫兩點(diǎn)間的距離.也考查了非負(fù)數(shù)的性質(zhì)、線段中點(diǎn)的定義以及分類討論思想的運(yùn)用.