30°
分析:先根據(jù)角平分線的定義求出∠EBC的度數(shù),再由三角形內(nèi)角和定理求出∠ACB的度數(shù),由平角的定義及角平分線的性質(zhì)即可求出∠ACE的度數(shù),進而求出∠BCE的度數(shù),再由三角形內(nèi)角和定理即可求解.
解答:∵△ABC中∠A=60°,∠ABC=50°,BE是∠ABC的角平分線,
∴∠EBC=
∠ABC=
×50°=25°,
∴∠ACB=180°-∠ABC-∠A=180°-50°-60°=70°,
∵CE是∠ACD的平分線,∴∠ACE=
(180°-∠ACB)=
(180°-70°)=55°,
∴∠BCE=∠ACB+∠ACE=70°+55°=125°,
∴∠E=180°-∠EBC-∠BCE=180°-25°-125°=30°.
點評:本題涉及到角平分線的性質(zhì)、三角形內(nèi)角和定理及平角的性質(zhì),具有一定的綜合性,但難易適中.