【題目】初三(1)班針對(duì)“垃圾分類”知曉情況對(duì)全班學(xué)生進(jìn)行專題調(diào)查活動(dòng),對(duì)“垃圾分類”的知曉情況分為、、、四類.其中,類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,每名學(xué)生可根據(jù)自己的情況任選其中一類,班長(zhǎng)根據(jù)調(diào)查結(jié)果進(jìn)行了統(tǒng)計(jì),并繪制成了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
“垃圾分類”知曉情況各類別人數(shù)條形統(tǒng)計(jì)圖 “垃圾分類”知曉情況各類別人數(shù)扇形統(tǒng)計(jì)圖
根據(jù)以上信息解決下列問題:
(1)初三(1)班參加這次調(diào)查的學(xué)生有______人,扇形統(tǒng)計(jì)圖中類別所對(duì)應(yīng)扇形的圓心角度數(shù)為______°;
(2)求出類別的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)類別的4名學(xué)生中有2名男生和2名女生,現(xiàn)從這4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校“垃圾分類”知識(shí)競(jìng)賽,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.
【答案】(1)40,144;(2)類別的學(xué)生數(shù)為18,補(bǔ)全圖形見解析;(3).
【解析】
(1)由類人數(shù)及其所占百分比可得總?cè)藬?shù);再由C類人數(shù)所占百分比求出類別所對(duì)應(yīng)扇形的圓心角度數(shù);
(2)總?cè)藬?shù)減去、、的人數(shù)求得類別人數(shù),據(jù)此即可補(bǔ)全圖形;
(3)列表得出所有等可能結(jié)果,再根據(jù)概率公式求解可得.
解:(1)調(diào)查學(xué)生總數(shù)=(人);
類別所對(duì)應(yīng)扇形的圓心角度數(shù)= ,
故答案為: 40,144;
(2)類別的學(xué)生數(shù)=40-4-16-40×5%=18人,
補(bǔ)全條形統(tǒng)計(jì)圖如圖.
(3)列表如下:
第二次 第一次 | 男1 | 男2 | 女1 | 女2 |
男1 | _______ | (男2,男1) | (女1,男1) | (女2,男1) |
男2 | (男1,男2) | _______ | (女1,男2) | (女2,男2) |
女1 | (男1,女1) | (男2,女1) | _______ | (女2,女1) |
女2 | (男1,女2) | (男2,女2) | (女1,女2) | _______ |
∴(選取的2名學(xué)生中恰好有1名男生、1名女生)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,,,為格點(diǎn),為小正方形邊的中點(diǎn).
(1)的長(zhǎng)等于_________;
(2)點(diǎn),分別為線段,上的動(dòng)點(diǎn),當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段,,并簡(jiǎn)要說明點(diǎn)和點(diǎn)的位置是如何找到的(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3…和B1,B2,B3,…分別在直線y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果點(diǎn)A1(1,1),那么點(diǎn)A2019的縱坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,點(diǎn)E為AC延長(zhǎng)線上一點(diǎn),且DE是⊙O的切線.
(1)求證:∠CDE= ∠BAC;
(2)若AB=3BD,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸交于點(diǎn),(在左側(cè)),與軸正半軸交于點(diǎn),點(diǎn)在拋物線上,軸,且.
(1)求點(diǎn),的坐標(biāo)及的值;
(2)點(diǎn)為軸右側(cè)拋物線上一點(diǎn).
①如圖①,若平分,交于點(diǎn),求點(diǎn)的坐標(biāo);
②如圖②,拋物線上一點(diǎn)的橫坐標(biāo)為2,直線交軸于點(diǎn),過點(diǎn)作直線的垂線,垂足為,若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠用天時(shí)間生產(chǎn)一款新型節(jié)能產(chǎn)品,每天生產(chǎn)的該產(chǎn)品被某網(wǎng)店以每件元的價(jià)格全部訂購(gòu),在生產(chǎn)過程中,由于技術(shù)的不斷更新,該產(chǎn)品第天的生產(chǎn)成本(元/件)與(天)之間的關(guān)系如圖所示,第天該產(chǎn)品的生產(chǎn)量(件)與(天)滿足關(guān)系式
第天,該廠生產(chǎn)該產(chǎn)品的利潤(rùn)是 元;
設(shè)第天該廠生產(chǎn)該產(chǎn)品的利潤(rùn)為元.
①求與之間的函數(shù)關(guān)系式,并指出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少?
②在生產(chǎn)該產(chǎn)品的過程中,當(dāng)天利潤(rùn)不低于元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為A(s,t)(其中s≠0).
(1)若拋物線經(jīng)過(2,7)和(-3,37)兩點(diǎn),且s=1.
①求拋物線的解析式;
②若n>1,設(shè)點(diǎn)M(n,y1),N(n+1,y2)在拋物線上,比較y1,y2的大小關(guān)系,并說明理由;
(2)若a=2,c=-2,直線y=2x+m與拋物線y=ax2+bx+c的交于點(diǎn)P和點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為h,點(diǎn)Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;
(3)若點(diǎn)A在拋物線y=上,且2≤s<3時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中放有三張卡片,每張卡片上寫有1個(gè)實(shí)數(shù),分別為1,2,3.(卡片除了實(shí)數(shù)不同外,其余均相同)
(1)從盒子中隨機(jī)抽取一張卡片,請(qǐng)直接寫出卡片上的實(shí)數(shù)是2的概率_______;
(2)先從盒子中隨機(jī)抽取一張卡片,將卡片上的實(shí)數(shù)作為點(diǎn)P的橫坐標(biāo),卡片不放回,再隨機(jī)抽取一張卡片,將卡片上的實(shí)數(shù)作為點(diǎn)P的縱坐標(biāo),兩次抽取的卡片上的實(shí)數(shù)分別作為點(diǎn)P的橫縱坐標(biāo).請(qǐng)你用列表法或樹狀圖法,求出點(diǎn)P在反比例函數(shù)上的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com