已知:如圖,觀察圖形回答下面問題:
(1)此圖形的名稱為______.
(2)請(qǐng)你與同伴一起做一個(gè)這樣的物體,并把它沿AS處剪開,鋪在桌面上,研究一下它的側(cè)面展開是一個(gè)______形.
(3)如果點(diǎn)C是SA的中點(diǎn),在C處有蝸牛想吃到的食品,恰好在A處有一只蝸牛,但它又不能直接爬到C處,只能沿圓錐曲面爬行,你能畫出蝸牛爬行的最短路程的圖形嗎?
(4)圓錐的母線長(zhǎng)為10cm,側(cè)面展開圖的夾角為90°,請(qǐng)你求出蝸牛爬行的最短路程的平方.

解:(1)由圖示可得,此圖形為圓錐;

(2)圓錐的側(cè)面展開圖是扇形;

(3)如圖所示,

AC為蝸牛爬行的最短路線;

(4)由勾股定理得:AC2=102+52=125平方厘米,
故蝸牛爬行的最短路程的平方為125平方厘米.
分析:(1)根據(jù)幾何體的特點(diǎn)可判斷此圖形為圓錐;
(2)圓錐的側(cè)面展開圖是扇形;
(3)要求蝸牛爬行的最短距離,需將圓錐的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.
(4)用勾股定理解直角三角形即可.
點(diǎn)評(píng):圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)D是AC的中點(diǎn),⊙O經(jīng)過B,C,D三點(diǎn),與AB精英家教網(wǎng)交于另一點(diǎn)E.
(1)請(qǐng)你仔細(xì)觀察圖形,連接圖中已表明字母的某兩點(diǎn),得到一條新線段,證明它與線段AE相等;
(2)在圖中,過點(diǎn)E作⊙O的切線,交AD于點(diǎn)F;
①求證:EF2=FD•FC;
②若AF=DF,求sinA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在△ABC中,CH是外角∠ACD的角平分線,BH是∠ABC的平分線,小明經(jīng)過對(duì)圖形的觀察和對(duì)已知條件的分析,得出∠H=
12
∠A的結(jié)論.你認(rèn)為小明的結(jié)論正確嗎?證明你的判斷.
解:我的判斷是:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,觀察圖形回答下面問題:
(1)此圖形的名稱為
圓錐

(2)請(qǐng)你與同伴一起做一個(gè)這樣的物體,并把它沿AS處剪開,鋪在桌面上,研究一下它的側(cè)面展開是一個(gè)
形.
(3)如果點(diǎn)C是SA的中點(diǎn),在C處有蝸牛想吃到的食品,恰好在A處有一只蝸牛,但它又不能直接爬到C處,只能沿圓錐曲面爬行,你能畫出蝸牛爬行的最短路程的圖形嗎?
(4)圓錐的母線長(zhǎng)為10cm,側(cè)面展開圖的夾角為90°,請(qǐng)你求出蝸牛爬行的最短路程的平方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等邊三角形ABD與等邊三角形ACE具有公共頂點(diǎn)A,連接CD,BE,交于點(diǎn)P.
(1)觀察度量,∠BPC的度數(shù)為
120°
120°
.(直接寫出結(jié)果)
(2)若繞點(diǎn)A將△ACE旋轉(zhuǎn),使得∠BAC=180°,請(qǐng)你畫出變化后的圖形.(示意圖)
(3)在(2)的條件下,求出∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案