如圖,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.

(1)求點(diǎn)A、B的坐標(biāo);

(2)設(shè)D為已知拋物線的對(duì)稱軸上的任意一點(diǎn),當(dāng)△ACD的面積等于△ACB的面積時(shí),求點(diǎn)D的坐標(biāo);

(3)若直線l過(guò)點(diǎn)E(4,0),M為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線l的解析式.

 

【答案】

解:(1)在中,令y=0,即,解得x1=﹣4,x2=2。

                ∵點(diǎn)A在點(diǎn)B的左側(cè),∴A、B點(diǎn)的坐標(biāo)為A(﹣4,0)、B(2,0)。

(2)由得,對(duì)稱軸為x=﹣1。

 在中,令x=0,得y=3。

     ∴OC=3,AB=6,

在Rt△AOC中,。

設(shè)△ACD中AC邊上的高為h,則有AC•h=9,解得h=

如圖1,在坐標(biāo)平面內(nèi)作直線平行于AC,且到AC的距離=h=,這樣的直線有2條,分別是L1和L2,則直線與對(duì)稱軸x=﹣1的兩個(gè)交點(diǎn)即為所求的點(diǎn)D。

 

 

設(shè)L1交y軸于E,過(guò)C作CF⊥L1于F,則CF=h=,

設(shè)直線AC的解析式為y=kx+b,

將A(﹣4,0),B(0,3)坐標(biāo)代入,得

,解得。來(lái)源:21

∴直線AC解析式為。來(lái)源:21世紀(jì)教育網(wǎng)]

直線L1可以看做直線AC向下平移CE長(zhǎng)度單位(個(gè)長(zhǎng)度單位)而形成的,

∴直線L1的解析式為。

則D1的縱坐標(biāo)為!郉1(﹣4,)。

同理,直線AC向上平移個(gè)長(zhǎng)度單位得到L2,可求得D2(﹣1,)。

綜上所述,D點(diǎn)坐標(biāo)為:D1(﹣4,),D2(﹣1,)。

(3)如圖2,以AB為直徑作⊙F,圓心為F.過(guò)E點(diǎn)作⊙F的切線,這樣的切線有2條.

連接FM,過(guò)M作MN⊥x軸于點(diǎn)N。

 

 

∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半徑FM=FB=3。

又FE=5,則在Rt△MEF中,-

ME=,sin∠MFE=,cos∠MFE=。

在Rt△FMN中,MN=MN•sin∠MFE=3×,

FN=MN•cos∠MFE=3×。

則ON=!郙點(diǎn)坐標(biāo)為(,)。

直線l過(guò)M(,),E(4,0),

設(shè)直線l的解析式為y=k1x+b1,則有,解得。

∴直線l的解析式為y=x+3。

同理,可以求得另一條切線的解析式為y=x﹣3。

綜上所述,直線l的解析式為y=x+3或y=x﹣3。

【解析】二次函數(shù)綜合題,待定系數(shù)法,曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,二次函數(shù)的性質(zhì),勾股定理,直線平行和平移的性質(zhì),直線與圓的位置關(guān)系,直線與圓相切的性質(zhì),圓周角定理,銳角三角函數(shù)定義。

(1)A、B點(diǎn)為拋物線與x軸交點(diǎn),令y=0,解一元二次方程即可求解。

(2)根據(jù)題意求出△ACD中AC邊上的高,設(shè)為h.在坐標(biāo)平面內(nèi),作AC的平行線,平行線之間的距離等于h.根據(jù)等底等高面積相等的原理,則平行線與坐標(biāo)軸的交點(diǎn)即為所求的D點(diǎn).從一次函數(shù)的觀點(diǎn)來(lái)看,這樣的平行線可以看做是直線AC向上或向下平移而形成.因此先求出直線AC的解析式,再求出平移距離,即可求得所作平行線的解析式,從而求得D點(diǎn)坐標(biāo)。這樣的平行線有兩條。

(3)本問(wèn)關(guān)鍵是理解“以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)”的含義.因?yàn)檫^(guò)A、B點(diǎn)作x軸的垂線,其與直線l的兩個(gè)交點(diǎn)均可以與A、B點(diǎn)構(gòu)成直角三角形,這樣已經(jīng)有符合題意的兩個(gè)直角三角形;第三個(gè)直角三角形從直線與圓的位置關(guān)系方面考慮,以AB為直徑作圓,當(dāng)直線與圓相切時(shí),根據(jù)圓周角定理,切點(diǎn)與A、B點(diǎn)構(gòu)成直角三角形.從而問(wèn)題得解。這樣的切線有兩條。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對(duì)稱軸上的任意一點(diǎn),則△AMC的周長(zhǎng)最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說(shuō)理;
(3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)P有且只有1個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對(duì)稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),連接MA、MC,當(dāng)△MAC的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫(xiě)出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案