【題目】某學(xué)校準(zhǔn)備利用今年暑假將舊教學(xué)樓進(jìn)行裝修,并要在規(guī)定的時間內(nèi)完成以保證秋季按時開學(xué).現(xiàn)有甲、乙兩個工程隊,若甲工程隊單獨做正好可按期完成, 但費用較高;若乙工程隊單獨做則要延期 4 天才能完成,但費用較低.學(xué)校經(jīng)過預(yù) 算,發(fā)現(xiàn)先由兩隊合作 3 天,再由乙隊獨做,正好可按期完成,且費用也比較合理. 請你算一算,規(guī)定完成的時間是多少天?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島自古就是中國的領(lǐng)土,我國有 關(guān)部門已對釣魚島及其附屬島嶼開展常態(tài)化監(jiān)視監(jiān)測. M、N 為釣魚島上東西海岸線上的兩點,MN 之間的距 離約為3.6km. 某日,我國一艘海監(jiān)船從 A 點沿正北方 向巡航,在 A 點測得島嶼的西端點 N 在點 A 的北偏東350方向;海監(jiān)船繼續(xù)航行 4km 后到達(dá) B 點 ,測得島嶼的東端點 M 在點 B 的北偏東 600方向,求點 M 距離海監(jiān)船航線的最短距離 (結(jié)果精確到 0.1km).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,點E是CD上的點(不與CD的中點重合), DE=AB, ∠BAC=∠D,AD=AC
(1)求證:四邊形AECB是等腰梯形;
(2)點F 是AB 邊延長線上一點,且BC=CF .聯(lián)結(jié)CF、EF,若AC⊥EF求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年3月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測儀進(jìn)行海上搜救,分別在A、B兩個探測點探測到C處是信號發(fā)射點,已知A、B兩點相距400m,探測線與海平面的夾角分別是和,若CD的長是點C到海平面的最短距離.
問BD與AB有什么數(shù)量關(guān)系,試說明理由;
求信號發(fā)射點的深度結(jié)果精確到1m,參考數(shù)據(jù):,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】單位組織員工自駕游,并打算在一家租車公司租用同一品牌同款的5座或7座越野車組成一個車隊.該租車公司同品牌同款的7座越野車的日租金比5座的多300元.已知該單位參加自駕游的員工共有40人,其中10人可以擔(dān)任司機,但這10人中至少需要留出3人做為機動司機,以備輪換替代.
(1)有人建議租8輛5座的越野車,剛好可以載40人.他的建議合理嗎?請說明理由;
(2)請為該單位設(shè)計一種租車方案,使車隊租車的日租金最少,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以線段a=16,b=13,c=10,d=6為邊作梯形,其中a、c作為梯形的兩底,這樣的梯形能作( ).
A.1個B.2個C.3個D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q,設(shè)A、P兩點間的距離為x.
探究:
(1)當(dāng)點Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;
(2)當(dāng)點Q在邊CD上時,設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當(dāng)點P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應(yīng)x的值;如果不可能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,則EF的最小值為( )
A. 2B. 2.2C. 2.4D. 2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點是直線上的一點,,平分.
(1)如圖1,若,求的度數(shù);
(2)如圖1中,若,直接寫出的度數(shù)(用含的式子表示);
(3)將圖1中的繞頂點逆時針旋轉(zhuǎn)至圖2的位置,其他條件不變,那么(2)中的求的結(jié)論是否還成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com