【題目】如圖,正方形ABCD中,AD=4,點E是對角線AC上一點,連接DE,過點E作EF⊥ED,交AB于點F,連接DF,交AC于點G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點N,若點F是AB的中點,則△EMN的周長是 .
【答案】
【解析】
試題解析:如圖1,過E作PQ⊥DC,交DC于P,交AB于Q,連接BE,
∵DC∥AB,
∴PQ⊥AB,
∵四邊形ABCD是正方形,
∴∠ACD=45°,
∴△PEC是等腰直角三角形,
∴PE=PC,
設(shè)PC=x,則PE=x,PD=4﹣x,EQ=4﹣x,
∴PD=EQ,
∵∠DPE=∠EQF=90°,∠PED=∠EFQ,
∴△DPE≌△EQF,
∴DE=EF,
易證明△DEC≌△BEC,
∴DE=BE,
∴EF=BE,
∵EQ⊥FB,
∴FQ=BQ=BF,
∵AB=4,F(xiàn)是AB的中點,
∴BF=2,
∴FQ=BQ=PE=1,
∴CE=,
Rt△DAF中,DF=,
∵DE=EF,DE⊥EF,
∴△DEF是等腰直角三角形,
∴DE=EF=,
∴PD==3,
如圖2,
∵DC∥AB,
∴△DGC∽△FGA,
∴,
∴CG=2AG,DG=2FG,
∴FG=,
∵AC=,
∴CG=,
∴EG=,
連接GM、GN,交EF于H,
∵∠GFE=45°,
∴△GHF是等腰直角三角形,
∴GH=FH=,
∴EH=EF﹣FH=,
∴∠NDE=∠AEF,
∴tan∠NDE=tan∠AEF=,
∴,
∴EN=,
∴NH=EH﹣EN=,
Rt△GNH中,GN=,
由折疊得:MN=GN,EM=EG,
∴△EMN的周長=EN+MN+EM=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠A=90°,DE∥BC,F(xiàn),G,H,I分別是DE,BE,BC,CD的中點,連接FG,GH,HI,IF,F(xiàn)H,GI.對于下列結(jié)論:①∠GFI=90°;②GH=GI;③GI= (BC﹣DE);④四邊形FGHI是正方形.其中正確的是(請寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個尋寶游戲的尋寶通道由正方形ABCD的邊組成,如圖1所示.為記錄尋寶者的行進路線,在AB的中點M處放置了一臺定位儀器,設(shè)尋寶者行進的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進,且表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則尋寶者的行進路線可能為( )
A.A→B
B.B→C
C.C→D
D.D→A
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是的中線,是線段上一點(不與點重合),交于點,,連結(jié).
(1)如圖1,當點與重合時,求證:四邊形是平行四邊形;
(2)如圖2,當點不與重合時,(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長交于點,若,且.當,時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年,安徽省財政總收入為4373億元,比上年增加9%,其中“4373億”這個數(shù)據(jù)用科學記數(shù)法表示是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k=,當F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1 , A2 , A3 , …在射線ON上,點B1 , B2 , B3 , …在射線OM上,△A1B1A2 , △A2B2A3 , △A3B3A4 , …均為等邊三角形,若OA1=2,則△A5B5A6的邊長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com