(2013•雅安)如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=
14
3
14
3
..
分析:由四邊形ABCD是平行四邊形,可得AB∥CD,AB=CD,繼而可判定△BEF∽△DCF,根據(jù)相似三角形的對應(yīng)邊成比例,即可得BF:DF=BE:CD問題得解.
解答:解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵AE:BE=4:3,
∴BE:AB=3:7,
∴BE:CD=3:7.
∵AB∥CD,
∴△BEF∽△DCF,
∴BF:DF=BE:CD=3:7,
即2:DF=3:7,
∴DF=
14
3

故答案為:
14
3
點評:此題考查了相似三角形的判定與性質(zhì)與平行四邊形的性質(zhì).此題比較簡單,解題的關(guān)鍵是根據(jù)題意判定△BEF∽△DCF,再利用相似三角形的對應(yīng)邊成比例的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=
mx
(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標(biāo)為(n,6),點C的坐標(biāo)為(-2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標(biāo);
(3)在x軸上求點E,使△ACE為直角三角形.(直接寫出點E的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,已知拋物線y=ax2+bx+c經(jīng)過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo); 若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案