【題目】已知拋物線C的解析式為y=ax2+bx+c,則下列說法中錯(cuò)誤的是( )
A.a確定拋物線的形狀與開口方向
B.若將拋物線C沿y軸平移,則a,b的值不變
C.若將拋物線C沿x軸平移,則a的值不變
D.若將拋物線C沿直線l:y=x+2平移,則a、b、c的值全變

【答案】D
【解析】解:∵平移的基本性質(zhì):平移不改變圖形的形狀和大。
∴拋物線C的解析式為y=ax2+bx+c,a確定拋物線的形狀與開口方向;
若將拋物線C沿y軸平移,頂點(diǎn)發(fā)生了變化,對稱軸沒有變化,a的值不變,則﹣ 不變,所以b的值不變;
若將拋物線C沿直線l:y=x+2平移,則a的值不變,
故選D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣3)2+2(a>0)的頂點(diǎn)為A,過點(diǎn)A作y軸的平行線交拋物線y=﹣ x2﹣2于點(diǎn)B,則A、B兩點(diǎn)間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=x2﹣2mx+m2﹣9.

(1)求證:無論m為何值,該拋物線與x軸總有兩個(gè)交點(diǎn);
(2)該拋物線與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),且OA<OB,與y軸的交點(diǎn)坐標(biāo)為(0,﹣5),求此拋物線的解析式;
(3)在(2)的條件下,拋物線的對稱軸與x軸的交點(diǎn)為N,若點(diǎn)M是線段AN上的任意一點(diǎn),過點(diǎn)M作直線MC⊥x軸,交拋物線于點(diǎn)C,記點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為D,點(diǎn)P是線段MC上一點(diǎn),且滿足MP= MC,連結(jié)CD,PD,作PE⊥PD交x軸于點(diǎn)E,問是否存在這樣的點(diǎn)E,使得PE=PD?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點(diǎn) , 旋轉(zhuǎn)角度是度;
(2)若連結(jié)EF,則△AEF是三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)營兒童玩具,已知成批購進(jìn)時(shí)的單價(jià)是20元.調(diào)查發(fā)現(xiàn):銷售單價(jià)是30元時(shí),月銷售量是200件,而銷售單價(jià)每上漲2元,月銷售量就減少10件,但每件玩具售價(jià)不能高于40元.設(shè)每件玩具的銷售單價(jià)上漲了x元時(shí),月銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍.
(2)每件玩具的售價(jià)定為多少元時(shí),月銷售利潤恰為2280元?
(3)每件玩具的售價(jià)定為多少元時(shí),月銷售利潤達(dá)到最大?最大為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtOBA,ABO=30°,OA=2,兩條直角邊重疊在互相的垂直的兩條直線上,線段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿OBA的邊按O→B→A→O運(yùn)動(dòng)一周,同時(shí)另一端點(diǎn)Q隨之在直線AO上運(yùn)動(dòng),如果PQ=,那么當(dāng)點(diǎn)P運(yùn)動(dòng)一周時(shí),點(diǎn)Q運(yùn)動(dòng)的總路程為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6cm的等邊三角形,點(diǎn)D從B點(diǎn)出發(fā)沿B→A方向在線段BA上以a cm/s速度運(yùn)動(dòng),與此同時(shí),點(diǎn)E從線段BC的某個(gè)端點(diǎn)出發(fā),以b cm/s速度在線段BC上運(yùn)動(dòng),當(dāng)D到達(dá)A點(diǎn)后,D、E運(yùn)動(dòng)停止,運(yùn)動(dòng)時(shí)間為t(秒)

(1)如圖1,若a=b=1,點(diǎn)E從C出發(fā)沿C→B方向運(yùn)動(dòng),連AE、CD,AE、CD交于F,連BF.當(dāng)0<t<6時(shí):
①求∠AFC的度數(shù);
②求 的值;
(2)如圖2,若a=1,b=2,點(diǎn)E從B點(diǎn)出發(fā)沿B→C方向運(yùn)動(dòng),E點(diǎn)到達(dá)C點(diǎn)后再沿C→B方向運(yùn)動(dòng).當(dāng)t≥3時(shí),連DE,以DE為邊作等邊△DEM,使M、B在DE兩側(cè),求M點(diǎn)所經(jīng)歷的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一艘貨船和一艘客船同時(shí)從港口A出發(fā),客船每小時(shí)比貨船多走5海里,客船與貨船速度的比為4:3,貨船沿東偏南10°方向航行,2小時(shí)后貨船到達(dá)B處,客船到達(dá)C處,若此時(shí)兩船相距50海里.

(1)求兩船的速度分別是多少?

(2)求客船航行的方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,BC=2AD,點(diǎn)F、G分別是邊BC、CD的中點(diǎn),連接AF、FG,過點(diǎn)D作DE∥FG交AF于點(diǎn)E.

(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為(平方單位).(只寫結(jié)果,不必說理)

查看答案和解析>>

同步練習(xí)冊答案