【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點A的坐標為(﹣2,3),點B的坐標為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標;若不存在,請說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC內接于⊙O,I為其內心,AI的延長線交⊙O于D,連OD交BC于E.
(1)求證: OD⊥ BC;
(2)若∠BOC=∠BIC,求∠BAC的度數(shù);
(3)①若DE=2,BE=4,①求⊙O的半徑r.
②當點A在優(yōu)弧BAC上移動時,OI是否有最小值,如有請求出最小值,如沒有請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x分別與雙曲線y=和y=交于第一象限內的點A和B,且OA=2AB,將直線y=x向左平移4個單位后,分別與x軸,y軸交于點D、E,與雙曲線y=交于點C,△OBC的面積為3.
(1)求m,n的值;
(2)點C到直線AB的距離是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一段6000米的道路由甲乙兩個工程隊負責完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用10天.
(1)求甲、乙兩工程隊每天各完成多少米?
(2)如果甲工程隊每天需工程費7000元,乙工程隊每天需工程費5000元,若甲隊先單獨工作若干天,再由甲乙兩工程隊合作完成剩余的任務,支付工程隊總費用不超過79000元,則兩工程隊最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為支持國家南水北調工程建設,小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場調查得知,當種植櫻桃的面積x不超過15畝時,每畝可獲得利潤y=1900元;超過15畝時,每畝獲得利潤y(元)與種植面積x(畝)之間的函數(shù)關系如下表(為所學過的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)
x(畝) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)請求出種植櫻桃的面積超過15畝時每畝獲得利潤y與x的函數(shù)關系式;
(2)如果小王家計劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過50畝,設小王家種植x畝櫻桃所獲得的總利潤為W元,求小王家承包多少畝荒山獲得的總利潤最大,并求總利潤W(元)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6,BC=12,動點M從A點出發(fā),以每秒1個單位長度的速度沿著AC方向向C點運動,動點N從C點出發(fā),以每秒2個單位長度的速度沿著CB方向向B點運動,如果M,N兩點同時出發(fā),當M到達C點處時,兩點都停止運動,設運動的時間為t秒,四邊形AMNB的面積為S.
(1)用含t的代數(shù)式表示:CM= ,CN= .
(2)當t為何值時,△CMN與△ABC相似?
(3)求S和t的關系式(寫出自變量t的取值范圍);當t取何值時,S的最小,并求最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線W的圖象與x軸交于A、O兩點,頂點為點B(﹣1,﹣1).
(1)求拋物線W的表達式;
(2)將拋物線W繞點A旋轉180°得到拋物線V,使拋物線V的頂點為E,試通過計算判斷拋物線V是否過點B;
(3)在拋物線W或V的圖象上是否存在點D,使S△EBD=S△EBO?若存在,請求出點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)交軸于點、,交軸于點,在軸上有一點,連接.
(1)求二次函數(shù)的表達式;
(2)若點為拋物線在軸負半軸上方的一個動點,求面積的最大值;
(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點B,與y軸交于點A,拋物線經(jīng)過A,B兩點,與x軸的另一交點為C.
(1)求拋物線的解析式;
(2)將△ABC以每秒1個單位的速度沿射線AB方向平移,平移后的三角形記為△DEF,平移時間為t秒,0≤t≤5,平移過程中EF與拋物線交于點G.
①當FG:GE=3:2時,求t的值;
②△DEF與△AOB重疊部分面積為S,直接寫出S與t的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com