在數(shù)學(xué)活動(dòng)課上,小明做了一個(gè)梯形紙板,測得一底邊長為7cm,高為12cm,兩腰長分別為15cm和20cm,則該梯形紙板的另一底邊長為______cm.
分為兩種情況:
①當(dāng)上底AD是7時(shí),如圖
過A作AE⊥BC于E,過D作DF⊥BC于F,
則AEDF,
∵ADBC,
∴四邊形AEFD是平行四邊形,
∵∠AEF=90°,
∴平行四邊形AEFD是矩形,
∴AD=EF=7,AE=DF=12,
在Rt△ABE和Rt△DFC中,由勾股定理得:BE=
152-122
=9,CF=
202-122
=16,
∴BC=9+7+16=32(cm);
②當(dāng)下底BC=7時(shí),如圖
過A作AE⊥CB,交CB的延長線于E,過D作DF⊥CB,交CB的延長線于F,
則AEDF,
∵ADBC,
∴四邊形AEFD是平行四邊形,
∵∠AEF=90°,
∴平行四邊形AEFD是矩形,
∴AD=EF,AE=DF=12,
在Rt△ABE和Rt△DFC中,由勾股定理得:CF=
152-122
=9,BE=
202-122
=16,
∴AD=EF=BE-(CF-CB)=16-(9-7)═14(cm)
故答案為32cm或14cm.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,BD⊥DC,∠C=45°.若AD=2,BC=8,則AB的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,∠ABC和∠DCB的平分線相交于梯形中位線EF上的一點(diǎn)P,若EF=5cm,則梯形ABCD的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ADBC,M、N分別為AD、BC的中點(diǎn),E、F分別是BM、CM的中點(diǎn).
(1)求證:△ABM≌△CDM;
(2)四邊形MENF是什么圖形?請(qǐng)證明你的結(jié)論;
(3)若四邊形MENF是正方形,則梯形的高與底邊BC有何數(shù)量關(guān)系?并請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ADBC,AB=CD,AE⊥BC于點(diǎn)E,AD=2,AE=3,∠B=45°.
(1)求∠C的度數(shù)及BE的長;
(2)求BC的長.
(友情提示:過點(diǎn)D作DF⊥BC于點(diǎn)F)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在梯形ABCD中,ADBC,AB=DC,∠C=60°,BD平分∠ABC,如果這個(gè)梯形的周長為30,則AB的長為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD是菱形,四邊形ACEF是正方形,若AC=2,∠B=60°,則圖中陰影部分的面積是( 。
A.4-
3
B.4-2
3
C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

命題:如圖1,已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),過點(diǎn)A作AG⊥EB,垂足為G,AG交BD于點(diǎn)F,則OE=OF.
對(duì)上述命題證明如下:
∵四邊形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO.
又∵AG⊥EB,
∴∠1+∠3=90°=∠2+∠3.
∴∠1=∠2
∴Rt△BOE≌Rt△AOF.
∴OE=OF
問題:對(duì)上述命題,若點(diǎn)E在AC的延長線上,AG⊥EB,交EB的延長線于點(diǎn)G,AG的延長線交DB的延長線于點(diǎn)F,其它條件不變(如圖2),則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將邊長都為1cm的正方形按如圖所示擺放,點(diǎn)A1、A2、A3、A4分別是正方形的中心,則前5個(gè)這樣的正方形重疊部分的面積和為( 。
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

同步練習(xí)冊答案