若一個圓錐的側(cè)面展開圖是半徑為18cm,圓心角為240°的扇形,則這個圓錐的底面半徑長是( )

A.6cm B.9cm C.12cm D.18cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(福建漳州卷)數(shù)學(xué)(解析版) 題型:解答題

(12分)理數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過思考、討論、交流,得到以下思路:

思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===

思路二 利用科普書上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===

思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…

思路四 …

請解決下列問題(上述思路僅供參考).

(1)類比:求出tan75°的值;

(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;

(3)拓展:如圖3,直線與雙曲線交于A,B兩點,與y軸交于點C,將直線AB繞點C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(福建莆田卷)數(shù)學(xué)(解析版) 題型:選擇題

(4分)命題“關(guān)于x的一元二次方程,必有實數(shù)解.”是假命題.則在下列選項中,可以作為反例的是( )

A.b=﹣3 B.b=﹣2 C.b=﹣1 D.b=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:填空題

已知正方形ABC1D1的邊長為1,延長C1D1到A1,以A1C1為邊向右作正方形A1C1C2D2,延長C2D2到A2,以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推…,若A1C1=2,且點A,D2, D3,…,D10都在同一直線上,則正方形A9C9C10D10的邊長是__________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG,點F,G分別在AD,BC上,連結(jié)OG,DG,若OG⊥DG,且☉O的半徑長為1,則下列結(jié)論不成立的是( )

A.CD+DF=4

B.CDDF=23

C.BC+AB=2+4

D.BCAB=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(解析版) 題型:解答題

(12分)如圖,在△ABC中(BC>AC),∠ACB=90°,點D在AB邊上,DE⊥AC于點E

(1)若,AE=2,求EC的長

(2)設(shè)點F在線段EC上,點G在射線CB上,以F,C,G為頂點的三角形與△EDC有一個銳角相等,F(xiàn)G交CD于點P,問:線段CP可能是△CFG的高線還是中線?或兩者都有可能?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(解析版) 題型:填空題

在平面直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)點P(1,t)在反比例函數(shù)y=的圖象上,過點P作直線l與x軸平行,點Q在直線l上,滿足QP=OP,若反比例函數(shù)y=的圖象經(jīng)過點Q,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(云南昆明卷)數(shù)學(xué)(解析版) 題型:選擇題

(3分)如圖,在△ABC中,∠B=40°,過點C作CD∥AB,∠ACD=65°,則∠ACB的度數(shù)為( )

A.60° B.65° C.70° D.75°

查看答案和解析>>

同步練習(xí)冊答案