【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點(diǎn)C、D,與邊BC相交于點(diǎn)F,OA與CD相交于點(diǎn)E,連接FE并延長交AC邊于點(diǎn)G.
(1)求證:DF∥AO;
(2)若AC=6,AB=10,求CG的長.
【答案】
【解析】
試題分析:(1)欲證明DF∥OA,只要證明OA⊥CD,DF⊥CD即可;
(2)過點(diǎn)作EM⊥OC于M,易知,只要求出EM、FM、FC即可解決問題;
試題解析:(1)證明:連接OD.
∵AB與⊙O相切與點(diǎn)D,又AC與⊙O相切與點(diǎn),
∴AC=AD,∵OC=OD,
∴OA⊥CD,
∴CD⊥OA,
∵CF是直徑,
∴∠CDF=90°,
∴DF⊥CD,
∴DF∥AO.
(2)過點(diǎn)作EM⊥OC于M,
∵AC=6,AB=10,
∴BC==8,
∴AD=AC=6,
∴BD=AB-AD=4,
∵BD2=BFBC,
∴BF=2,
∴CF=BC-BF=6.OC=CF=3,
∴OA==3,
∵OC2=OEOA,
∴OE=,
∵EM∥AC,
∴,
∴OM=,EM=,F(xiàn)M=OF+OM=,
∴,
∴CG=EM=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點(diǎn)A(表示整數(shù)a)在原點(diǎn)的左側(cè),點(diǎn)B(表示整數(shù)b)在原點(diǎn)的右側(cè).若|a-b|=2016,且AO=2BO,則a+b的值為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠B+∠D=180°,對(duì)角線AC平分∠BAD.
(1)如圖1,若∠DAB=120°,且∠B=90°,試探究邊AD、AB與對(duì)角線AC的數(shù)量關(guān)系并說明理由.
(2)如圖2,若將(1)中的條件“∠B=90°”去掉,(1)中的結(jié)論是否成立?請(qǐng)說明理由.
(3)如圖3,若∠DAB=90°,探究邊AD、AB與對(duì)角線AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中一漁船在A處且與小島C相距70nmile,若該漁船由西向東航行30nmile到達(dá)B處,此時(shí)測(cè)得小島C位于B的北偏東30°方向上;求該漁船此時(shí)與小島C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC且BD>CD,DF⊥AB,△CDE和△ADB都是等腰直角三角形,給出下列結(jié)論,正確的是
①△ADC≌△BDE;
②△ADF≌△BDF;
③△CDE≌△AFD;
④△ACE≌ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各數(shù)為邊長,不能組成直角三角形的是( )
A. 3,4,5 B. 4,5,6 C. 5,12,13 D. 6,8,10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com