【題目】某企業(yè)接到一批粽子生產(chǎn)任務(wù),按要求在15天內(nèi)完成,約定這批粽子的出廠價(jià)為每只6元,為按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足下列關(guān)系式:
(1)李明第幾天生產(chǎn)的粽子數(shù)量為420只?
(2)如圖,設(shè)第x天每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價(jià)-成本)
(3)設(shè)(2)小題中第m天利潤達(dá)到最大值,若要使第(m+1)天的利潤比第m天的利潤至少多48元,則第(m+1)天每只粽子至少應(yīng)提價(jià)幾元?
【答案】(1)第10天生產(chǎn)的粽子數(shù)量為420只.(2)當(dāng)x=12時(shí),w有最大值,最大值為768.(3)第13天每只粽子至少應(yīng)提價(jià)0.1元.
【解析】
試題分析:(1)把y=420代入y=30x+120,解方程即可求得;
(2)根據(jù)圖象求得成本p與x之間的關(guān)系,然后根據(jù)利潤等于訂購價(jià)減去成本價(jià),然后整理即可得到W與x的關(guān)系式,再根據(jù)一次函數(shù)的增減性和二次函數(shù)的增減性解答;
(3)根據(jù)(2)得出m+1=13,根據(jù)利潤等于訂購價(jià)減去成本價(jià)得出提價(jià)a與利潤w的關(guān)系式,再根據(jù)題意列出不等式求解即可.
試題解析:(1)設(shè)李明第n天生產(chǎn)的粽子數(shù)量為420只,
由題意可知:30n+120=420,
解得n=10.
答:第10天生產(chǎn)的粽子數(shù)量為420只.
(2)由圖象得,當(dāng)0≤x≤9時(shí),p=4.1;
當(dāng)9≤x≤15時(shí),設(shè)P=kx+b,
把點(diǎn)(9,4.1),(15,4.7)代入得,
,
解得,
∴p=0.1x+3.2,
①0≤x≤5時(shí),w=(6-4.1)×54x=102.6x,當(dāng)x=5時(shí),w最大=513(元);
②5<x≤9時(shí),w=(6-4.1)×(30x+120)=57x+228,
∵x是整數(shù),
∴當(dāng)x=9時(shí),w最大=741(元);
③9<x≤15時(shí),w=(6-0.1x-3.2)×(30x+120)=-3x2+72x+336,
∵a=-3<0,
∴當(dāng)x=-=12時(shí),w最大=768(元);
綜上,當(dāng)x=12時(shí),w有最大值,最大值為768.
(3)由(2)可知m=12,m+1=13,
設(shè)第13天提價(jià)a元,由題意得,w13=(6+a-p)(30x+120)=510(a+1.5),
∴510(a+1.5)-768≥48,解得a=0.1.
答:第13天每只粽子至少應(yīng)提價(jià)0.1元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1,y1),B(x2,y2)兩點(diǎn)在一次函數(shù)y=3x+1的圖像上,若y1>y2,則x1,x2的大小關(guān)系是( )
A. x1<x2 B. x1>x2 C. x1=x2 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次“中華好詩詞”比賽中,某參賽小組的得分如下:95,85,95,85,80,95,90.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.95,90
B.95,85
C.90,95
D.80,85
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個不為零的有理數(shù)相除,如果交換它們的位置,商不變,那么( )
A. 兩數(shù)相等 B. 兩數(shù)互為相反數(shù) C. 兩數(shù)互為倒數(shù) D. 兩數(shù)相等或互為相反數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次“愛心互助”捐款活動中,某班第一小組7名同學(xué)捐款的金額(單位:元)分別為6, 7,6,15,9,6,9.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校7個班同學(xué)積極捐出自己的零花錢獻(xiàn)愛心,各班捐款的數(shù)額分別是(單位:元):500,200,500,300,500,250,1350.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是(。
A. 500,200 B. 500,500 C. 500,300 D. 1350,500
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△CDE均為等腰直角三角形,點(diǎn)B,C,D在一條直線上,點(diǎn)M是AE的中點(diǎn),下列結(jié)論:①tan∠AEC=;②S△ABC+S△CDE≧S△ACE;③BM⊥DM;④BM=DM,正確結(jié)論的個數(shù)是( )
A、1個 B、2個 C、3個 D、4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“H7N9”是一種新型禽流感,其病毒顆粒呈多形性,其匯總球形病毒的最大直徑為0.00000012米,這一直徑用科學(xué)記數(shù)法表示為( )
A.1.2×10﹣9米
B.1.2×10﹣8米
C.1.2×10﹣7米
D.12×10﹣9米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com