【題目】水果基地為了選出適應(yīng)市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個品種的小西紅柿秧苗各 300 株分別種植在甲、乙兩個大棚. 對于市場最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性,進行了抽樣調(diào)查,從甲、乙兩個大棚各收集了 24 株秧苗上的小西紅柿的個數(shù),并對數(shù)據(jù)進行整理、描述和分析。
下面給出了部分信息:(說明:45 個以下為產(chǎn)量不合格,45 個及以上為產(chǎn)量合格,其中 45~65 個為產(chǎn)量良好,65~85 個為產(chǎn)量優(yōu)秀)
a.補全下面乙組數(shù)據(jù)的頻數(shù)分布直方圖(數(shù)據(jù)分成 6 組: 25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85):
b.乙組數(shù)據(jù)在產(chǎn)量良好(45≤x<65)這兩組的具體數(shù)據(jù)為: 46 46 47 47 48 48 55 57 57 57 58 61
c.數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 52.25 | 51 | 58 | 238 |
乙 | 52.25 | 57 | 210 |
(1)補全乙的頻數(shù)分布直方圖.
(2)寫出表中的值.
(3)根據(jù)樣本情況,估計乙大棚產(chǎn)量良好及以上的秧苗數(shù)為 株.
(4)根據(jù)抽樣調(diào)查情況,可以推斷出 大棚的小西紅柿秧苗品種更適應(yīng)市場需求,寫出理由.(至少從兩個不同的角度說明推斷的合理性).
【答案】(1)見解析;(2)a=51.5;(3)225;(4)乙,理由為在兩組樣本數(shù)據(jù)平均數(shù)相同的情況下,乙大棚樣本數(shù)據(jù)的中位數(shù)高于甲,乙大棚樣本方差小更穩(wěn)定. (答案不唯一,至少兩條理由.)
【解析】
(1) 根據(jù)頻率分布直方圖得到各組個數(shù),然后求出65≤x<75的個數(shù),補全頻數(shù)分布直方圖.
(2)根據(jù)中位數(shù)的求法,找到中間的兩個數(shù)求出平均數(shù)即可.
(3)用乙組數(shù)據(jù)中良好及以上的株數(shù)16除以24再乘以300即可得出答案,
(4)根據(jù)情況進行討論分析,理由合理即可.
(1)65≤x<75的個數(shù)=24-3-4-6-6-2=4,補全數(shù)分布直方圖.如下:
(2)全部24個數(shù)中第12個和13個數(shù)是48,55,乙組的中位數(shù)=,
故答案為:51.5,
(3)乙大棚產(chǎn)量良好及以上的秧苗數(shù)=300×=225,
(4)乙,理由為在兩組樣本數(shù)據(jù)平均數(shù)相同的情況下,乙大棚樣本數(shù)據(jù)的中位數(shù)高于甲,乙大棚樣本方差小更穩(wěn)定.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AC:y=x+8與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c過點A,C,且與x軸的另一交點為B,又點P是拋物線的對稱軸l上一動點.若△PAC周長的最小值為10+2,則拋物線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,A、C分別在y軸、x軸上,且OA=6cm,OC=8cm,點P從點A開始以2cm/s的速度向B運動,點Q從點B開始以1cm/s的速度向C運動,設(shè)運動時間為t.
(1)如圖(1),當(dāng)t為何值時,△BPQ的面積為4cm2?
(2)當(dāng)t為何值時,以B、P、Q為頂點的三角形與△ABC相似?
(3)如圖(2),在運動過程中的某一時刻,反比例函數(shù)y=的圖象恰好同時經(jīng)過P、Q兩點,求這個反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的任意一點我們定義:當(dāng)為常數(shù),且時,點為點的“對應(yīng)點”.
(1)點的“對應(yīng)點”的坐標(biāo)為 ;若點的“對應(yīng)點”的坐標(biāo)為,且點的縱坐標(biāo)為,則點的橫坐標(biāo) ;
(2)若點的“對應(yīng)點”在第一、三象限的角平分線(原點除外)上,求值;
(3)若點在軸的負(fù)半軸上,點的“對應(yīng)點”為點,且,求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:
已知:如圖,直線和直線外一點求作:直線,使得
作法:如圖
①在直線上任取一點,以點為圓心,為半徑畫圓,與直線交于點,兩點
②連接,,延長交于點
③作的平分線,并反向延長
所以直線就是所求做的直線
根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),保全圖形(保留作圖痕跡)
(2)完成下面的證明
證明:,
(_______________________)(填推理的依據(jù))
是的外角
.
平分__________________
(____________________)(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解決問題:有48支隊520名運動員參加男子籃球和女子排球比賽,其中每支男子籃球隊10人,每支女子排球隊12人,男子籃球、女子排球隊各多少支參賽?
(2)問題拓展:若有a支球隊參加男子籃球比賽,b支球隊參加女子排球比賽,其中每支男子籃球隊m人,每支女子排球隊n人,則參加籃球比賽和參加排球比賽的隊員共有_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AC、BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,S△AEF=4,則下列結(jié)論:①FD=2AF;②S△BCE=36;③S△ABE=16; ④△AEF∽△ACD,其中一定正確的是( 。
A.①②③④B.①②C.②③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點D,點E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線.
(2)如圖②,當(dāng)∠ABC=90°時,線段DE與BC有什么數(shù)量關(guān)系?請說明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示拋物線過點,點,且
(1)求拋物線的解析式及其對稱軸;
(2)點在直線上的兩個動點,且,點在點的上方,求四邊形的周長的最小值;
(3)點為拋物線上一點,連接,直線把四邊形的面積分為3∶5兩部分,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com