(2009•衢州)如圖,已知點A(-4,8)和點B(2,n)在拋物線y=ax2上.
(1)求a的值及點B關(guān)于x軸對稱點P的坐標,并在x軸上找一點Q,使得AQ+QB最短,求出點Q的坐標;
(2)平移拋物線y=ax2,記平移后點A的對應(yīng)點為A′,點B的對應(yīng)點為B′,點C(-2,0)和點D(-4,0)是x軸上的兩個定點.
①當拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數(shù)解析式;
②當拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數(shù)解析式;若不存在,請說明理由.

【答案】分析:(1)把(-4,8)代入y=ax2可求得a的值,把x=2代入所求的拋物線解析式,可得n的值,那么P的坐標為2,縱坐標為-n,求得AP與x軸的交點即為Q的坐標;
(2)A′C+CB′最短,說明拋物線向左平移了線段CQ的距離,用頂點式設(shè)出相應(yīng)的函數(shù)解析式,把新頂點坐標代入即可;
(3)左右平移時,使A′D+DB′′最短即可,那么作出點A′關(guān)于x軸對稱點的坐標為A′′,得到直線A′′B′′的解析式,讓y=0,求得相應(yīng)的點的坐標;進而得到拋物線頂點平移的規(guī)律,用頂點式設(shè)出相應(yīng)的函數(shù)解析式,把新頂點坐標代入即可.
解答:
解:(1)將點A(-4,8)的坐標代入y=ax2
解得a=
將點B(2,n)的坐標代入y=x2
求得點B的坐標為(2,2),
則點B關(guān)于x軸對稱點P的坐標為(2,-2),
設(shè)直線AP的解析式為y=kx+b,
,
解得:,
∴直線AP的解析式是y=-x+
令y=0,得x=
即所求點Q的坐標是(,0);

(2)①CQ=|-2-|=,(1分)
故將拋物線y=x2向左平移個單位時,A′C+CB′最短,

此時拋物線的函數(shù)解析式為y=(x+2;
②左右平移拋物線y=x2,因為線段A′B′和CD的長是定值,
所以要使四邊形A′B′CD的周長最短,只要使A′D+CB′最短;(1分)

第一種情況:如果將拋物線向右平移,顯然有A′D+CB′>AD+CB,
因此不存在某個位置,使四邊形A′B′CD的周長最短;
第二種情況:設(shè)拋物線向左平移了b個單位,
則點A′和點B′的坐標分別為A′(-4-b,8)和B′(2-b,2).
因為CD=2,因此將點B′向左平移2個單位得B′′(-b,2),
要使A′D+CB′最短,只要使A′D+DB′′最短,
點A′關(guān)于x軸對稱點的坐標為A′′(-4-b,-8),
直線A′′B′′的解析式為y=x+b+2.
要使A′D+DB′′最短,點D應(yīng)在直線A′′B′′上,
將點D(-4,0)代入直線A′′B′′的解析式,解得b=
故將拋物線向左平移時,存在某個位置,使四邊形A′B′CD的周長最短,
此時拋物線的函數(shù)解析式為y=(x+2
點評:用到的知識點為:兩點關(guān)于x軸對稱,橫坐標相同,縱坐標互為相反數(shù);拋物線平移,不改變二次項的系數(shù),看頂點是如何平移的即可;涉及距離之和最小問題,應(yīng)從作其中一點關(guān)于直線的對稱點入手思考.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年浙江省舟山市中考數(shù)學試卷(解析版) 題型:解答題

(2009•衢州)如圖,已知點A(-4,8)和點B(2,n)在拋物線y=ax2上.
(1)求a的值及點B關(guān)于x軸對稱點P的坐標,并在x軸上找一點Q,使得AQ+QB最短,求出點Q的坐標;
(2)平移拋物線y=ax2,記平移后點A的對應(yīng)點為A′,點B的對應(yīng)點為B′,點C(-2,0)和點D(-4,0)是x軸上的兩個定點.
①當拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數(shù)解析式;
②當拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數(shù)解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省衢州市中考數(shù)學試卷(解析版) 題型:解答題

(2009•衢州)如圖,已知點A(-4,8)和點B(2,n)在拋物線y=ax2上.
(1)求a的值及點B關(guān)于x軸對稱點P的坐標,并在x軸上找一點Q,使得AQ+QB最短,求出點Q的坐標;
(2)平移拋物線y=ax2,記平移后點A的對應(yīng)點為A′,點B的對應(yīng)點為B′,點C(-2,0)和點D(-4,0)是x軸上的兩個定點.
①當拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數(shù)解析式;
②當拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數(shù)解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年初中數(shù)學第一輪復(fù)習教學案例.5.3.全等三角形(解析版) 題型:解答題

(2009•衢州)如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點P在矩形上方,點Q在矩形內(nèi).
求證:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省舟山市中考數(shù)學試卷(解析版) 題型:解答題

(2009•衢州)如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點P在矩形上方,點Q在矩形內(nèi).
求證:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.

查看答案和解析>>

同步練習冊答案