【題目】平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)(k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,AD交y軸于P點(diǎn)
(1)已知點(diǎn)A的坐標(biāo)是(2,3),求k的值及C點(diǎn)的坐標(biāo);
(2)若△APO的面積為2,求點(diǎn)D到直線AC的距離.
【答案】(1)k=6,C(﹣2,﹣3);(2).
【解析】
試題分析:(1)根據(jù)點(diǎn)A的坐標(biāo)是(2,3),平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)(k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,可以求得k的值和點(diǎn)C的坐標(biāo);
(2)根據(jù)△APO的面積為2,可以求得OP的長(zhǎng),從而可以求得點(diǎn)P的坐標(biāo),進(jìn)而可以求得直線AP的解析式,從而可以求得點(diǎn)D的坐標(biāo),再根據(jù)等積法可以求得點(diǎn)D到直線AC的距離.
試題解析:(1)∵點(diǎn)A的坐標(biāo)是(2,3),平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)(k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,∴3=,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,∴k=6,C(﹣2,﹣3),即k的值是6,C點(diǎn)的坐標(biāo)是(﹣2,﹣3);
(2)∵△APO的面積為2,點(diǎn)A的坐標(biāo)是(2,3),∴2=,得OP=2,設(shè)過點(diǎn)P(0,2),點(diǎn)A(2,3)的直線解析式為y=ax+b,則,解得:,即直線PC的解析式為,將y=0代入,得x═﹣4,∴OP=4,∵A(2,3),C(﹣2,﹣3),∴AC==,設(shè)點(diǎn)D到AC的距離為m,∵S△ACD=S△ODA+S△ODC,∴,解得,m=,即點(diǎn)D到直線AC的距離是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A、C的坐標(biāo)分別為A(6,0)、 C(0,4),點(diǎn)B在第一象限.
(1)寫出點(diǎn)B的坐標(biāo)和長(zhǎng)方形OABC的面積;
(2)若點(diǎn)D沿長(zhǎng)方形的邊從O→C→B運(yùn)動(dòng),若三角形OBD的面積是長(zhǎng)方形OABC的面積的三分之一, 求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程a(x+m)2+n=0(a,m,n均為常數(shù),m≠0)的解是x1=-2,x2=3,則方程a(x+m-5)2+n=0的解是( 。
A. x1=-2,x2=3
B. x1=-7,x2=-2
C. x1=3,x2=-2
D. x1=3,x2=8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四個(gè)足球與足球規(guī)定質(zhì)量偏差如下:﹣3,+5,+10,﹣20(超過為正,不足為負(fù)).質(zhì)量相對(duì)最合規(guī)定的是( 。
A. +10 B. ﹣20 C. ﹣3 D. +5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了一個(gè)班級(jí)的學(xué)生,對(duì)他們一周的讀書時(shí)間進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)如下表所示:
讀書時(shí)間(小時(shí)) | 7 | 8 | 9 | 10 | 11 |
學(xué)生人數(shù) | 6 | 10 | 9 | 8 | 7 |
則該班學(xué)生一周讀書時(shí)間的中位數(shù)和眾數(shù)分別是( 。
A. 9,8 B. 9,9 C. 9.5,9 D. 9.5,8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P,Q分別是雙曲線在第一、三象限上的點(diǎn),PA⊥軸,QB⊥軸,垂足分別為A,B,點(diǎn)C是PQ與軸的交點(diǎn).設(shè)△PAB的面積為,△QAB的面積為,△QAC的面積為,則有( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com