【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤的解集.
【答案】(1)m=-1,k=2 (2)C(1,0) ; 1<x≤2
【解析】試題分析:
已知點(diǎn)A(2,1)在函數(shù)y=x+m和反比例函數(shù)的圖象上,代入即可求得m和k的值;(2)求得一次函數(shù)的解析式令y=0,求得x的值,即可得點(diǎn)C的坐標(biāo),根據(jù)圖象直接判定不等式組0<x+m≤的解集即可.
試題解析:
(1)由題意可得:點(diǎn)A(2,1)在函數(shù)y=x+m的圖象上,
∴2+m=1即m=﹣1,
∵A(2, 1)在反比例函數(shù)y=的圖象上,∴ ,
∴k=2;
(2)∵一次函數(shù)解析式為y=x﹣1,令y=0,得x=1,
∴點(diǎn)C的坐標(biāo)是(1,0),
由圖象可知不等式組0<x+m≤的解集為1<x≤2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣2(x﹣1)2+3的頂點(diǎn)坐標(biāo)是( )
A.(﹣1,3)
B.(1,3)
C.(1,﹣3)
D.(﹣1,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),點(diǎn)P到圓上的點(diǎn)的最大距離為7,最小距離為1,則此圓的半徑為( )
A. 6B. 4C. 3D. 4或3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠C.若∠ABD的平分線與CD的延長線交于F,且∠F=x°(其中0<x<90),則∠ABC=°,(用含有x的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點(diǎn)D,則對于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( )
A.①
B.②
C.①和②
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點(diǎn)A的直線,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同側(cè)(如圖1)且AD=CE,請寫出:BA和AC的位置關(guān)系 . (不必證明)
(2)若BC在DE的兩側(cè)(如圖2)其他條件不變,請問(1)中AB與AC的位置關(guān)系還成立嗎?若成立,寫出證明過程;若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動點(diǎn),設(shè)運(yùn)動時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為 ;拋物線的解析式為 .
(2)在圖1中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動,同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動.當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖2中,若點(diǎn)P在對稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動,過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com