已知AB是半圓O的直徑,點C是半圓O上的動點,點D是線段AB延長線上的動點,在運動過程中,保持CD=OA.
(1)當直線CD與半圓O相切時(如圖①),求∠ODC的度數(shù);
(2)當直線CD與半圓O相交時(如圖②),設另一交點為E,連接AE,若AE∥OC,
①AE與OD的大小有什么關系?為什么?
②求∠ODC的度數(shù).
解:(1)如圖①,連接OC,
∵OC=OA,CD=OA,
∴OC=CD,
∴∠ODC=∠COD,
∵CD是⊙O的切線,
∴∠OCD=90°,
∴∠ODC=45°;
(2)如圖②,連接OE.
∵CD=OA,∴CD=OC=OE=OA,
∴∠1=∠2,∠3=∠4.
∵AE∥OC,
∴∠2=∠3.
設∠ODC=∠1=x,則∠2=∠3=∠4=x.
∴∠AOE=∠OCD=180°﹣2x.
①AE=OD.理由如下:
在△AOE與△OCD中,
∴△AOE≌△OCD(SAS),
∴AE=OD.
②∠6=∠1+∠2=2x.
∵OE=OC,∴∠5=∠6=2x.
∵AE∥OC,
∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,
∴x=36°.
∴∠ODC=36°.
科目:初中數(shù)學 來源: 題型:
某校為了解該校九年級學生對藍球、乒乓球、羽毛球、足球四種球類運動項目的喜愛情況,對九年級部分學生進行了隨機抽樣調(diào)查,每名學生必須且只能選擇最喜愛的一項運動項目上,將調(diào)查結果統(tǒng)計后繪制成如圖兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,回答下列問題:
(1)這次被抽查的學生有 ”對應扇形的圓心角是 度;
(3)若該校九年級共有480名學生,估計該校九年級最喜歡足球的學生約有 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,是某公園的一角,∠AOB=90°,的半徑OA長是6米,點C是OA的中點,點D在上,CD∥OB,則圖中草坪區(qū)(陰影部分)的面積是( 。
| A. | (3π+)米 | B. | (π+)米 | C. | (3π+9)米 | D. | (π﹣9)米 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com