如圖,點(diǎn)、分別在正方形的邊、上,以為圓心,的長(zhǎng)為半徑畫弧,交邊于點(diǎn).當(dāng)時(shí),求證:.

證明:∵四邊形為正方形,

,

、兩點(diǎn)在⊙上,

在△和△中,

∴ △≌△

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在平面直角坐標(biāo)系中,Rt△ABC的AC邊與x軸重合,且點(diǎn)A在原點(diǎn),∠ACB=90°,∠BAC=60°,AC=2,又一直徑為2的⊙D與x軸切于點(diǎn)E(1,0);
(1)若Rt△ABC沿x軸正方向移動(dòng),當(dāng)斜邊AB與⊙D相切時(shí),試寫出此時(shí)點(diǎn)A的坐標(biāo);
(2)當(dāng)Rt△ABC的邊BC移動(dòng)到與y軸重合時(shí),則把Rt△ACB繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使斜邊AB恰好經(jīng)過(guò)點(diǎn)F(0,2),得Rt△A′B′O,AB分別與A′O、A′B′相交于M、N,如圖(2)所示.
①求旋轉(zhuǎn)角∠AOA′的度數(shù);
②求四邊形FOMN的面積.(結(jié)果保留根號(hào))
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在平面直角坐標(biāo)系中,Rt△ABC的AC邊與x軸重合,且點(diǎn)A在原點(diǎn),∠ACB=90°,∠BAC=60°AC=2,;又一直徑為2的⊙D與x軸切于點(diǎn)E(1,0);

(1)若Rt△ABC沿x軸正方向移動(dòng),當(dāng)斜邊AB與⊙O相切時(shí),試寫出此時(shí)點(diǎn)A的坐標(biāo);

(2)當(dāng)Rt△ABC的邊BC移動(dòng)到與y軸重合時(shí),則把Rt△ACB繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使斜邊AB恰好經(jīng)過(guò)點(diǎn)F(0,2),得Rt△A/B/O,AB分別與A/O、A/B/相交于M、N,如圖(2)所示。

    ① 求旋轉(zhuǎn)角∠AOA′的度數(shù)。

    ② 求四邊形FOMN的面積。(結(jié)果保留根號(hào))

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年九年級(jí)(上)調(diào)研考試訓(xùn)練題(解析版) 題型:解答題

如圖(1),在平面直角坐標(biāo)系中,Rt△ABC的AC邊與x軸重合,且點(diǎn)A在原點(diǎn),∠ACB=90°,∠BAC=60°,AC=2,又一直徑為2的⊙D與x軸切于點(diǎn)E(1,0);
(1)若Rt△ABC沿x軸正方向移動(dòng),當(dāng)斜邊AB與⊙D相切時(shí),試寫出此時(shí)點(diǎn)A的坐標(biāo);
(2)當(dāng)Rt△ABC的邊BC移動(dòng)到與y軸重合時(shí),則把Rt△ACB繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使斜邊AB恰好經(jīng)過(guò)點(diǎn)F(0,2),得Rt△A′B′O,AB分別與A′O、A′B′相交于M、N,如圖(2)所示.
①求旋轉(zhuǎn)角∠AOA′的度數(shù);
②求四邊形FOMN的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江西省九年級(jí)(上)期末數(shù)學(xué)試卷1(解析版) 題型:解答題

如圖(1),在平面直角坐標(biāo)系中,Rt△ABC的AC邊與x軸重合,且點(diǎn)A在原點(diǎn),∠ACB=90°,∠BAC=60°,AC=2,又一直徑為2的⊙D與x軸切于點(diǎn)E(1,0);
(1)若Rt△ABC沿x軸正方向移動(dòng),當(dāng)斜邊AB與⊙D相切時(shí),試寫出此時(shí)點(diǎn)A的坐標(biāo);
(2)當(dāng)Rt△ABC的邊BC移動(dòng)到與y軸重合時(shí),則把Rt△ACB繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使斜邊AB恰好經(jīng)過(guò)點(diǎn)F(0,2),得Rt△A′B′O,AB分別與A′O、A′B′相交于M、N,如圖(2)所示.
①求旋轉(zhuǎn)角∠AOA′的度數(shù);
②求四邊形FOMN的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省汕頭市金平區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1),在平面直角坐標(biāo)系中,Rt△ABC的AC邊與x軸重合,且點(diǎn)A在原點(diǎn),∠ACB=90°,∠BAC=60°,AC=2,又一直徑為2的⊙D與x軸切于點(diǎn)E(1,0);
(1)若Rt△ABC沿x軸正方向移動(dòng),當(dāng)斜邊AB與⊙D相切時(shí),試寫出此時(shí)點(diǎn)A的坐標(biāo);
(2)當(dāng)Rt△ABC的邊BC移動(dòng)到與y軸重合時(shí),則把Rt△ACB繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使斜邊AB恰好經(jīng)過(guò)點(diǎn)F(0,2),得Rt△A′B′O,AB分別與A′O、A′B′相交于M、N,如圖(2)所示.
①求旋轉(zhuǎn)角∠AOA′的度數(shù);
②求四邊形FOMN的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案