如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,C是弧AD的中點,弦CE⊥AB于點H,連接AD,分別交CE、BC于點P、Q,連接BD.
(1)求證:P是線段AQ的中點;
(2)若⊙O的半徑為5,AQ=,求弦CE的長.

【答案】分析:(1)首先利用等角對等邊證明:∠ACP=∠CAP得到:PA=PC,然再證明PC=PQ,即可得到P是AQ的中點;
(2)首先證明:△CAQ∽△CBA,依據(jù)相似三角形的對應(yīng)邊的比相等求得AC、BC的長度,然后根據(jù)直角三角形的面積公式即可求得CH的長,則可以求得CE的長.
解答:(1)證明:∵AB是⊙O的直徑,弦CE⊥AB,
=
又∵C是的中點,
=,
=
∴∠ACP=∠CAP.
∴PA=PC,
∵AB是直徑.
∴∠ACB=90°.
∴∠PCQ=90°-∠ACP,∠CQP=90°-∠CAP,
∴∠PCQ=∠CQP.
∴PC=PQ.
∴PA=PQ,即P是AQ的中點;

(2)解:∵=,
∴∠CAQ=∠ABC.
又∵∠ACQ=∠BCA,
∴△CAQ∽△CBA.
===
又∵AB=10,
∴AC=6,BC=8.
根據(jù)直角三角形的面積公式,得:AC•BC=AB•CH,
∴6×8=10CH.
∴CH=
又∵CH=HE,
∴CE=2CH=
點評:本題考查了圓周角定理以及相似三角形的判定與性質(zhì),三角形的面積公式,正確理解定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹