【題目】如圖,在直角坐標系中,A,B為定點,A(2,﹣3),B(4,﹣3),定直線l∥AB,P是l上一動點,l到AB的距離為6,M,N分別為PA,PB的中點下列說法中:
①線段MN的長始終為1;②△PAB的周長固定不變;
③△PMN的面積固定不變; ④若存在點Q使得四邊形APBQ是平行四邊形,則Q到MN所在直線的距離必為9.
其中正確的說法是_____.
【答案】①③④
【解析】
根據(jù)三角形中位線打臉了判斷①;根據(jù)三角形的周長公式判斷②;根據(jù)相似三角形的性質定理判斷③,根據(jù)平行四邊形的性質判斷④.
∵點A的坐標為(2,﹣3),點B的坐標(4,﹣3),
∴AB=2,
∵M,N分別為PA,PB的中點,
∴MN=AB=1,①正確;
當點P在直線l上運動時,PA、PB發(fā)生變化,
∴△PAB的周長是變化的,②錯誤;
S△ABC=×2×6=6,
∵M,N分別為PA,PB的中點,
∴MN∥AB,
∴△PMN∽△PAB,
∴=,
∴△PMN的面積固定不變,③正確;
當四邊形APBQ是平行四邊形時,點Q到直線l的距離為12,
∵直線l到MN所在直線的距離為3,
∴Q到MN所在直線的距離為9,④正確;
故答案為:①③④.
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,-2) .
(1)求這兩個函數(shù)的關系式;
(2)觀察圖象,直接寫出使得y1>y2成立的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在半圓上,點D在圓外,DE⊥AB于點E交AC于點F,且DF=CD
(1)求證:CD是⊙O的切線;
(2)若點F是AC的中點,DF=2EF=2,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,OA=8,AB=6,點D在邊BC上,且CD=3DB,點E是邊OA上一點,連接DE,將四邊形ABDE沿DE折疊,若點A的對稱點A′恰好落在邊OC上,則OE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=﹣2x﹣2分別與x軸、y軸交于點A、B.頂點為(1,4)的拋物線經過點A.
(1)求拋物線的解析式;
(2)點C為第一象限拋物線上一動點.設點C的橫坐標為m,△ABC的面積為S.當m為何值時,S的值最大,并求S的最大值;
(3)在(2)的結論下,若點M在y軸上,△ACM為直角三角形,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線y=ax2+ax+c(a≠0)與x軸的交點為A、B(A在B的左邊)且AB=3,與y軸交于C,若拋物線過點E(﹣1,2).
(1)求拋物線的解析式;
(2)在x軸的下方是否存在一點P使得△PBC的面積為3?若存在求出P點的坐標,不存在說明理由;
(3)若D為原點關于A點的對稱點,F點坐標為(0,1.5),將△CEF繞點C旋轉,在旋轉過程中,線段DE與BF是否存在某種關系(數(shù)量、位置)?請指出并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A和點B,與y軸交于點C,且OA=2,OB=OC=6,點D是拋物線的頂點,過點D作x軸的垂線,垂足為E.
(1)求拋物線的解析式及點D的坐標;
(2)連接BD,若點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標:
(3)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標平面內,以線段MN為對角線作正方形MPNQ,請求出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,垂足為E,連接DF,則∠CDF等于()
A.50°B.60°C.70°D.80°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com