(2012•成都)已知當x=1時,2ax2+bx的值為3,則當x=2時,ax2+bx的值為
6
6
分析:將x=1代入2ax2+bx=3得2a+b=3,然后將x=2代入ax2+bx得4a+2b=2(2a+b),之后整體代入即可.
解答:解:將x=1代入2ax2+bx=3得2a+b=3,
將x=2代入ax2+bx得4a+2b=2(2a+b),
∵2a+b=3,
∴原式=2×3=6.
故答案為6.
點評:本題考查了代數(shù)式求值,利用整體思想是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•成都)已知兩圓外切,圓心距為5cm,若其中一個圓的半徑是3cm,則另一個圓的半徑是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成都模擬)如圖,已知?ABCD的對角線BD=4cm,將?ABCD繞其對稱中心O旋轉(zhuǎn)180°,則點D所轉(zhuǎn)過的路徑長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成都模擬)已知關(guān)于x、y的方程組
x+2y=5k-2
x-y=-k+4
的解是一對異號的數(shù),則k的取值范圍是
-2<k<1
-2<k<1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成都模擬)已知:如圖,△ABC內(nèi)接于⊙O,BC為直徑,AD⊥BC于點D,點E為DA延長線上一點,連接BE,交⊙O于點F,連接CF,交AB、AD于M、N兩點.
(1)若線段AM、AN的長是關(guān)于x的一元二次方程x2-2mx+n2-mn+
5
4
m2=0的兩個實數(shù)根,求證:AM=AN;
(2)若AN=
15
8
,DN=
9
8
,求DE的長;
(3)若在(1)的條件下,S△AMN:S△ABE=9:64,且線段BF與EF的長是關(guān)于y的一元二次方程5y2-16ky+10k2+5=0的兩個實數(shù)根,求直徑BC的長.

查看答案和解析>>

同步練習冊答案