【題目】如圖,RtABC 中,AB=AC,∠BAC=90°AD BC 邊上的高,E AD 上的一點。連接 EC,過點 E EFEC 交射線 BA 于點 FEF、AC 交于點 G。若 DE=3EGC AFG 面積的差是 2,則 BD=_____.

【答案】5

【解析】

DC上取點M,使DM=DE,連接EM,通過證明FAEEMC,根據(jù)EGC AFG 面積的差是 2,推出EAC EMC 面積的差是 2,然后設(shè)MC=x,則AE=x,AD=x+3,利用面積差即可求出x,即可求出BD.

解:在DC上取點M,使DM=DE,連接EM

RtABC,AB=ACAD BC

∴BD=CD=AD,∠EAF=135°

同理∠EMC=135°

AE=CM

AEF+CED=ECM+CED=90°

∴∠AEF=ECM

FAEEMC

∵SEGC -SAFG=2

∴SEAC -SFAE=2

∴SEAC -SEMC=2

設(shè)MC=x,則AE=x,AD=x+3

∵SEAC= SMEC=

-=2

解得x=2(x>0,負值舍去),

AD=2+3=5

BD=AD=5

故答案為:5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)是常數(shù),且)在同一直角坐標系中的圖象可能是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一幅長80cm,寬50cm的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如果要使整個掛圖的面積是ycm2,設(shè)金色紙邊的寬為xcm,要求紙邊的寬度不得少于1cm,同時不得超過2cm.

(1)求出y關(guān)于x的函數(shù)解析式,并直接寫出自變量的取值范圍;

(2)此時金色紙邊的寬應(yīng)為多少cm時,這幅掛圖的面積最大?求出最大面積的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰中,,,于點,點延長線上一點,點是線段上一點,.下列結(jié)論:①;②;③是等邊三角形;④.其中正確結(jié)論的個數(shù)是( )

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC為等邊三角形,D為BC延長線上的一點,CE平分ACD,CE=BD,求證:ADE為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.

(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是________.

(2)若甲、乙均可在本層移動.

①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率________

②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,ABBCABBC,ABCDAEBDEBCF.

(1)AB2CD;

①求證:BC2BF;

②連CE,若DE6,CE,求EF的長;

(2)AB6,則CE的最小值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a,bc表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有  

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案