試證:如果a<b<c,則二次方程(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0的一個(gè)根在a,b之間,另一個(gè)根在b,c之間.

解:當(dāng)x=a時(shí),(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=(a-b)(a-c),
而a<b<c,
∴a-b<0,a-c<0,
∴(a-b)(a-c)>0,
當(dāng)x=b時(shí),(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=(b-c)(b-a),
而a<b<c,
∴b-a>0,b-c<0,
∴(b-c)(b-a)<0,
當(dāng)x=c時(shí),(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=(c-a)(c-b),
而a<b<c,
∴c-a>0,c-b>0,
∴(c-a)(c-b)>0,
∴二次方程(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0的一個(gè)根在a,b之間,另一個(gè)根在b,c之間.
分析:由于要證明二次方程(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0的一個(gè)根在a,b之間,另一個(gè)根在b,c之間,計(jì)算證明當(dāng)x=a、b時(shí)方程的左邊(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)一個(gè)大于0,一個(gè)小于0,當(dāng)x=b、c時(shí),也是如此.由此即可解決解決問(wèn)題.
點(diǎn)評(píng):此題主要考查了一元二次方程的解和拋物線與x軸交點(diǎn)的坐標(biāo)的對(duì)應(yīng)關(guān)系,也利用了方程的解就是函數(shù)值為0時(shí)對(duì)應(yīng)的自變量的取值,同時(shí)也利用了數(shù)形結(jié)合的思想,此題比較復(fù)雜,對(duì)于學(xué)生的能力要求比較高,平時(shí)應(yīng)該注意訓(xùn)練.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),A、B是x軸上的兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),精英家教網(wǎng)二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)A、B,與y軸相交于點(diǎn)C.
(1)如圖情況下:a、c的符號(hào)之間有何關(guān)系?
(2)如果線段OC的長(zhǎng)度是線段OA、OB長(zhǎng)度的比例中項(xiàng),試證a、c互為倒數(shù);
(3)在(2)的條件下,如果b=-4,AB=4
3
,求a、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線y=
1
2
x2-x+2.
(1)確定此拋物線的對(duì)稱軸方程和頂點(diǎn)坐標(biāo);
(2)如圖,若直線l:y=kx(k>0)分別與拋物線交于兩個(gè)不同的點(diǎn)A、B,與直線y=-x+4相交于點(diǎn)P,試證
OP
OA
+
OP
OB
=2;
(3)在(2)中,是否存在k值,使A、B兩點(diǎn)的縱坐標(biāo)之和等于4?如果存在,求出k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在平面直角坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),A、B是x軸上的兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)A、B,與y軸相交于點(diǎn)C.
(1)如圖情況下:a、c的符號(hào)之間有何關(guān)系?
(2)如果線段OC的長(zhǎng)度是線段OA、OB長(zhǎng)度的比例中項(xiàng),試證a、c互為倒數(shù);
(3)在(2)的條件下,如果b=-4,AB=4數(shù)學(xué)公式,求a、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•烏魯木齊)已知拋物線y=x2-x+2.
(1)確定此拋物線的對(duì)稱軸方程和頂點(diǎn)坐標(biāo);
(2)如圖,若直線l:y=kx(k>0)分別與拋物線交于兩個(gè)不同的點(diǎn)A、B,與直線y=-x+4相交于點(diǎn)P,試證=2;
(3)在(2)中,是否存在k值,使A、B兩點(diǎn)的縱坐標(biāo)之和等于4?如果存在,求出k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案