【題目】甲、乙、丙、丁四位選手各10次射擊的平均成績都是9.2環(huán),其中甲的成績的方差為0.015, 乙的成績的方差為0.035,的成績的方差為0.025,的成績的方差為0.027,由此可知

A)甲的成績最穩(wěn)定 (B)乙的成績最穩(wěn)定

C)丙的成績最穩(wěn)定 (D)丁的成績最穩(wěn)定

【答案】A

【解析】由表可知,S2=0.015,S2=0.035,S2=0.025,S2=0.27,

于是S2>S2>S2>S2;則這四位選手中水平發(fā)揮最穩(wěn)定的是甲.故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(﹣3,﹣1).

(1)將△ABC沿y軸正方向平移3個單位得到△A1B1C1 , 畫出△A1B1C1 , 并寫出點B1坐標;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2 , 并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=6cm,DE=4cm,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P(m3,m1)x軸上,則點P的坐標為( )

A. (0,-2) B. (2,0) C. (40) D. (0,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①直徑是弦;②垂直于半徑的直線是這個圓的切線;③圓只有一個外切三角形;④三點確定一個圓,其中假命題的個數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.

(1)閱讀填空

如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.

理由:連接AH,EH.

∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH與矩形ABCD等積.

(2)操作實踐

平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.

如圖②,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).

(3)解決問題三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的 (填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.

如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).

(4)拓展探究

n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n﹣1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.

如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上的一點由原點出發(fā),向左移動2個單位長度后又向左移動了4個單位,兩次共向左移動了幾 個單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A05)關(guān)于原點對稱,得到點A′,那么A′的坐標是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.

(1)填空:與∠AOE互補的角是;
(2)若∠AOD=36°,求∠DOE的度數(shù);
(3)當(dāng)∠AOD=x°時,請直接寫出∠DOE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案