精英家教網 > 初中數學 > 題目詳情
(2012•泰州一模)如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:
3
,且AB=30m,李亮同學在大堤上A點處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結果保留三個有效數字,
3
≈1.732)
分析:由i的值求得大堤的高度AE,點A到點B的水平距離BE,從而求得MN的長度,由仰角求得DN的高度,從而由DN,AM,h求得高度CD.
解答:解:延長MA交直線BC于點E,
∵AB=30,i=1:
3
,
∴AE=15,BE=15
3
,
∴MN=BC+BE=30+15
3

又∵仰角為30°,
∴DN=
MN
3
=
30+15
3
3
=10
3
+15,
CD=DN+NC=DN+MA+AE=10
3
+15+15+1.5≈17.32+31.5≈48.8(m).
點評:本題考查了直角三角形在坡度上的應用,由i的值求得大堤的高度和點A到點B的水平距離,求得MN,由仰角求得DN高度,進而求得總高度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•泰州一模)使
3x-1
有意義的x的取值范圍是
x
1
3
x
1
3

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•泰州一模)月球距離地球表面約為384000000米,將這個距離用科學記數法(保留兩個有效數字)表示為
3.8×108
3.8×108
米.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•泰州一模)(1)計算:
12
+|
3
-2
|+2-1-sin30°.    
(2)化簡:
a-2
a2-1
÷(
1
a-1
-1).

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•泰州一模)如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上的一點,AE⊥CD交DC的延長線于E,CF⊥AB于F,且CE=CF.
(1)判斷DE與⊙O的位置關系,并說明理由;
(2)若AB=6,BD=3,求BC和AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•泰州一模)已知Rt△ABC,∠ACB=90°,AC=BC=4,點O是AB中點,點P、Q分別從點A、C出發(fā),沿AC、CB以每秒1個單位的速度運動,到達點C、B后停止.連接PQ、點D是PQ中點,連接CD并延長交AB于點E.
(1)試說明:△POQ是等腰直角三角形;
(2)設點P、Q運動的時間為t秒,試用含t的代數式來表示△CPQ的面積S,并求出S的最大值;
(3)如圖2,點P在運動過程中,連接EP、EQ,問四邊形PEQC是什么四邊形,并說明理由;
(4)求點D運動的路徑長(直接寫出結果).

查看答案和解析>>

同步練習冊答案